Yeon Sun Lee, Sara M Hall, Cyf Ramos-Colon, Michael Remesic, David Rankin, Todd W Vanderah, Frank Porreca, Josephine Lai, Victor J Hruby
{"title":"Blockade of non-opioid excitatory effects of spinal dynorphin A at bradykinin receptors.","authors":"Yeon Sun Lee, Sara M Hall, Cyf Ramos-Colon, Michael Remesic, David Rankin, Todd W Vanderah, Frank Porreca, Josephine Lai, Victor J Hruby","doi":"10.14800/rci.517","DOIUrl":null,"url":null,"abstract":"<p><p>Dynorphin A (Dyn A) is an endogenous opioid ligand that possesses neuroinhibitory (antinociceptive) effects via μ, δ, and κ opioid receptors. However, under chronic pain conditions, up-regulated spinal Dyn A can also interact with bradykinin receptors (BRs) to promote hyperalgesia through a neuroexcitatory(pronociceptive) effect. These excitatory effects cannot be blocked by an opioid antagonist, and thus are non-opioid in nature. On the basis of the structural dissimilarity between Dyn A and endogenous BR ligands, bradykinin(BK) and kallidin (KD), Dyn A's interaction with BRs could not be predicted, and provided an opportunity to identify a novel potential neuroexcitatory target. Systematic structure-activity relationship (SAR) studies discovered a minimum pharmacophore of Dyn A, [des-Arg<sup>7</sup>]-Dyn A-(4-11) LYS1044 for antagonist activity at the BRs, along with insights into the key structural features for BRs recognition, i.e., amphipathicity. The des-Tyr fragment of dynorphin does not bind to opioid receptors. Intrathecal administration of des-Tyr dynorphin produces hyperalgesia reminiscent of behaviors seen in peripheral n europathic pain models and at higher doses, neurotoxicity. Our lead ligand LYS1044 negatively modulated Dyn A-(2-13)-induced neuroexcitatory effects in naïve animals and blocked mechanical hypersensitivity and thermal hyperalgesia in a dose-dependent manner in animals with experimental neuropathic pain. Based on these results, ligand LYS1044 might prevent abnormal pain states by blocking the neuroexcitatory effects of increased levels of Dyn A that are seen in experimental models of neuropathic pain and that likely promote excitation mediated by BRs in the spinal cord.</p>","PeriodicalId":74650,"journal":{"name":"Receptors & clinical investigation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515361/pdf/nihms-669984.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/rci.517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Dynorphin A (Dyn A) is an endogenous opioid ligand that possesses neuroinhibitory (antinociceptive) effects via μ, δ, and κ opioid receptors. However, under chronic pain conditions, up-regulated spinal Dyn A can also interact with bradykinin receptors (BRs) to promote hyperalgesia through a neuroexcitatory(pronociceptive) effect. These excitatory effects cannot be blocked by an opioid antagonist, and thus are non-opioid in nature. On the basis of the structural dissimilarity between Dyn A and endogenous BR ligands, bradykinin(BK) and kallidin (KD), Dyn A's interaction with BRs could not be predicted, and provided an opportunity to identify a novel potential neuroexcitatory target. Systematic structure-activity relationship (SAR) studies discovered a minimum pharmacophore of Dyn A, [des-Arg7]-Dyn A-(4-11) LYS1044 for antagonist activity at the BRs, along with insights into the key structural features for BRs recognition, i.e., amphipathicity. The des-Tyr fragment of dynorphin does not bind to opioid receptors. Intrathecal administration of des-Tyr dynorphin produces hyperalgesia reminiscent of behaviors seen in peripheral n europathic pain models and at higher doses, neurotoxicity. Our lead ligand LYS1044 negatively modulated Dyn A-(2-13)-induced neuroexcitatory effects in naïve animals and blocked mechanical hypersensitivity and thermal hyperalgesia in a dose-dependent manner in animals with experimental neuropathic pain. Based on these results, ligand LYS1044 might prevent abnormal pain states by blocking the neuroexcitatory effects of increased levels of Dyn A that are seen in experimental models of neuropathic pain and that likely promote excitation mediated by BRs in the spinal cord.