Harshal A. Sanghvi, Riki H. Patel, Ankur Agarwal, Shailesh Gupta, Vivek Sawhney, Abhijit S. Pandya
{"title":"A deep learning approach for classification of COVID and pneumonia using DenseNet-201","authors":"Harshal A. Sanghvi, Riki H. Patel, Ankur Agarwal, Shailesh Gupta, Vivek Sawhney, Abhijit S. Pandya","doi":"10.1002/ima.22812","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, our model consists of deep learning approach: DenseNet201 for detection of COVID and Pneumonia using the Chest X-ray Images. The model is a framework consisting of the modeling software which assists in Health Insurance Portability and Accountability Act Compliance which protects and secures the Protected Health Information . The need of the proposed framework in medical facilities shall give the feedback to the radiologist for detecting COVID and pneumonia though the transfer learning methods. A Graphical User Interface tool allows the technician to upload the chest X-ray Image. The software then uploads chest X-ray radiograph (CXR) to the developed detection model for the detection. Once the radiographs are processed, the radiologist shall receive the Classification of the disease which further aids them to verify the similar CXR Images and draw the conclusion. Our model consists of the dataset from Kaggle and if we observe the results, we get an accuracy of 99.1%, sensitivity of 98.5%, and specificity of 98.95%. The proposed Bio-Medical Innovation is a user-ready framework which assists the medical providers in providing the patients with the best-suited medication regimen by looking into the previous CXR Images and confirming the results. There is a motivation to design more such applications for Medical Image Analysis in the future to serve the community and improve the patient care.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 1","pages":"18-38"},"PeriodicalIF":3.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537800/pdf/IMA-9999-0.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22812","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12
Abstract
In the present paper, our model consists of deep learning approach: DenseNet201 for detection of COVID and Pneumonia using the Chest X-ray Images. The model is a framework consisting of the modeling software which assists in Health Insurance Portability and Accountability Act Compliance which protects and secures the Protected Health Information . The need of the proposed framework in medical facilities shall give the feedback to the radiologist for detecting COVID and pneumonia though the transfer learning methods. A Graphical User Interface tool allows the technician to upload the chest X-ray Image. The software then uploads chest X-ray radiograph (CXR) to the developed detection model for the detection. Once the radiographs are processed, the radiologist shall receive the Classification of the disease which further aids them to verify the similar CXR Images and draw the conclusion. Our model consists of the dataset from Kaggle and if we observe the results, we get an accuracy of 99.1%, sensitivity of 98.5%, and specificity of 98.95%. The proposed Bio-Medical Innovation is a user-ready framework which assists the medical providers in providing the patients with the best-suited medication regimen by looking into the previous CXR Images and confirming the results. There is a motivation to design more such applications for Medical Image Analysis in the future to serve the community and improve the patient care.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.