{"title":"TAZ Regulates the Cisplatin Resistance of Epithelial Ovarian Cancer Cells via the ANGPTL4/SOX2 Axis.","authors":"Caihong Li, Qin Wang, Youzhen Luo, Juan Xiang","doi":"10.1155/2022/5632164","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Epithelial ovarian cancer (EOC) is a fatal gynecological malignancy. This study explored the mechanism of TAZ in regulating drug sensitivity of cisplatin (DDP-)-resistant EOC cells through the ANGPTL4/SOX2 axis.</p><p><strong>Methods: </strong>The A2780/DDP cells were prepared by stepwise progressive concentration method. The drug resistance and TAZ expression in EOC cells were determined. Drug sensitivity was measured after TAZ overexpression in A2780 cells and TAZ downregulation in A2780/DDP cells, respectively. The effects of TAZ knockdown on apoptosis rate, stemness, and cancer stem cell (CSC) marker (CD44, OCT4, and ALDH1A) levels in A2780/DDP and DDP-treated A2780/DDP cells were assessed. The binding of TAZ and ANGPTL4 was verified using ChIP-qPCR, and ANGPTL4 and SOX2 levels were determined. The effects of different combined treatments of TAZ, ANGPTL4, and SOX2 on drug sensitivity of A2780/DDP cells and DDP-treated A2780/DDP cells were evaluated.</p><p><strong>Results: </strong>TAZ was upregulated in drug-resistant EOC cells. TAZ knockdown significantly increased the drug sensitivity of A2780/DDP cells, while TAZ overexpression markedly decreased the drug sensitivity of A2780 cells. TAZ silencing promoted apoptosis of drug-resistant EOC cells and inhibited cell stemness. TAZ targeted ANGPTL4 and TAZ silencing enhanced drug sensitivity of A2780/DDP cells by inhibiting ANGPTL4. ANGPTL4 overexpression elevated SOX2 expression, and SOX2 downregulation reduced the drug resistance and promoted the apoptosis of A2780/DDP cells.</p><p><strong>Conclusion: </strong>TAZ regulates DDP sensitivity of drug-resistant EOC cells via the ANGPTL4/SOX2 axis.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553699/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/5632164","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Objective: Epithelial ovarian cancer (EOC) is a fatal gynecological malignancy. This study explored the mechanism of TAZ in regulating drug sensitivity of cisplatin (DDP-)-resistant EOC cells through the ANGPTL4/SOX2 axis.
Methods: The A2780/DDP cells were prepared by stepwise progressive concentration method. The drug resistance and TAZ expression in EOC cells were determined. Drug sensitivity was measured after TAZ overexpression in A2780 cells and TAZ downregulation in A2780/DDP cells, respectively. The effects of TAZ knockdown on apoptosis rate, stemness, and cancer stem cell (CSC) marker (CD44, OCT4, and ALDH1A) levels in A2780/DDP and DDP-treated A2780/DDP cells were assessed. The binding of TAZ and ANGPTL4 was verified using ChIP-qPCR, and ANGPTL4 and SOX2 levels were determined. The effects of different combined treatments of TAZ, ANGPTL4, and SOX2 on drug sensitivity of A2780/DDP cells and DDP-treated A2780/DDP cells were evaluated.
Results: TAZ was upregulated in drug-resistant EOC cells. TAZ knockdown significantly increased the drug sensitivity of A2780/DDP cells, while TAZ overexpression markedly decreased the drug sensitivity of A2780 cells. TAZ silencing promoted apoptosis of drug-resistant EOC cells and inhibited cell stemness. TAZ targeted ANGPTL4 and TAZ silencing enhanced drug sensitivity of A2780/DDP cells by inhibiting ANGPTL4. ANGPTL4 overexpression elevated SOX2 expression, and SOX2 downregulation reduced the drug resistance and promoted the apoptosis of A2780/DDP cells.
Conclusion: TAZ regulates DDP sensitivity of drug-resistant EOC cells via the ANGPTL4/SOX2 axis.
期刊介绍:
Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.