Observations on chromosome-specific sequencing for the construction of cross-species chromosome homology maps and its resolution of human:alpaca homology.
Malcolm A Ferguson-Smith, Jorge C Pereira, Ana Borges, Fumio Kasai
{"title":"Observations on chromosome-specific sequencing for the construction of cross-species chromosome homology maps and its resolution of human:alpaca homology.","authors":"Malcolm A Ferguson-Smith, Jorge C Pereira, Ana Borges, Fumio Kasai","doi":"10.1186/s13039-022-00622-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The history of comparative chromosome mapping is briefly reviewed, with discussion about the problem that occurs in chromosome painting when size heteromorphisms between homologues cause contamination in chromosomes sorted by flow cytometry that are used in the preparation of chromosome-specific DNA probes.</p><p><strong>Main body: </strong>As an example, we show in the alpaca (Vicagna pacos) that sequencing of contaminated chromosome sorts can reveal chromosome homologies from alignment with human and mouse genome reference sequences. The procedure identifies syntenic blocks of DNA separated in the human karyotype that are associated in the closely related alpaca and dromedary (Camelus dromedarius) karyotypes. This example provides proof of principal for the validity of the method for comparative chromosome mapping.</p><p><strong>Conclusion: </strong>It is suggested that the approach presented here may have application in the construction of comparative chromosome maps between distantly related taxa, such as monotremes and mammals.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-022-00622-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The history of comparative chromosome mapping is briefly reviewed, with discussion about the problem that occurs in chromosome painting when size heteromorphisms between homologues cause contamination in chromosomes sorted by flow cytometry that are used in the preparation of chromosome-specific DNA probes.
Main body: As an example, we show in the alpaca (Vicagna pacos) that sequencing of contaminated chromosome sorts can reveal chromosome homologies from alignment with human and mouse genome reference sequences. The procedure identifies syntenic blocks of DNA separated in the human karyotype that are associated in the closely related alpaca and dromedary (Camelus dromedarius) karyotypes. This example provides proof of principal for the validity of the method for comparative chromosome mapping.
Conclusion: It is suggested that the approach presented here may have application in the construction of comparative chromosome maps between distantly related taxa, such as monotremes and mammals.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.