Mohamed El Mistiri, Daniel E Rivera, Predrag Klasnja, Junghwan Park, Eric Hekler
{"title":"Model Predictive Control Strategies for Optimized mHealth Interventions for Physical Activity.","authors":"Mohamed El Mistiri, Daniel E Rivera, Predrag Klasnja, Junghwan Park, Eric Hekler","doi":"10.23919/acc53348.2022.9867350","DOIUrl":null,"url":null,"abstract":"<p><p>Many individuals fail to engage in sufficient physical activity (PA), despite its well-known health benefits. This paper examines Model Predictive Control (MPC) as a means to deliver optimized, personalized behavioral interventions to improve PA, as reflected by the number of steps walked per day. Using a health behavior fluid analogy model representing Social Cognitive Theory, a series of diverse strategies are evaluated in simulated scenarios that provide insights into the most effective means for implementing MPC in PA behavioral interventions. The interplay of measurement, information, and decision is explored, with the results illustrating MPC's potential to deliver feasible, personalized, and user-friendly behavioral interventions, even under circumstances involving limited measurements. Our analysis demonstrates the effectiveness of sensibly formulated constrained MPC controllers for optimizing PA interventions, which is a preliminary though essential step to experimental evaluation of constrained MPC control strategies under real-life conditions.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":" ","pages":"1392-1397"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555804/pdf/nihms-1804961.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc53348.2022.9867350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many individuals fail to engage in sufficient physical activity (PA), despite its well-known health benefits. This paper examines Model Predictive Control (MPC) as a means to deliver optimized, personalized behavioral interventions to improve PA, as reflected by the number of steps walked per day. Using a health behavior fluid analogy model representing Social Cognitive Theory, a series of diverse strategies are evaluated in simulated scenarios that provide insights into the most effective means for implementing MPC in PA behavioral interventions. The interplay of measurement, information, and decision is explored, with the results illustrating MPC's potential to deliver feasible, personalized, and user-friendly behavioral interventions, even under circumstances involving limited measurements. Our analysis demonstrates the effectiveness of sensibly formulated constrained MPC controllers for optimizing PA interventions, which is a preliminary though essential step to experimental evaluation of constrained MPC control strategies under real-life conditions.