Pengfei Li, Shanshan Xue, Lu Sun, Xupeng Zong, Li An, Dan Qu, Xiayan Wang, Zaicheng Sun
{"title":"Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system.","authors":"Pengfei Li, Shanshan Xue, Lu Sun, Xupeng Zong, Li An, Dan Qu, Xiayan Wang, Zaicheng Sun","doi":"10.1038/s41377-022-00984-5","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dots (CDs) as the advancing fluorescent carbon nanomaterial have superior potential and prospective. However, the ambiguous photoluminescence (PL) mechanism and intricate structure-function relationship become the greatest hindrances in the development and applications of CDs. Herein, red emissive CDs were synthesized in high yield from o-phenylenediamine (oPD) and catechol (CAT). The PL mechanism of the CDs is considered as the molecular state fluorophores because 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) is separated and exhibits the same PL properties and behavior as the CDs. These include the peak position and shape of the PL emission and PL excitation and the emission dependence on pH and solvent polarity. Both of them display close PL lifetime decays. Based on these, we deduce that DHQP is the fluorophore of the red emissive CDs and the PL mechanism of CDs is similar to DHQP. During the PL emission of CDs, the electron of the molecule state can transfer to CDs. The formation process of DHQP is further confirmed by the reaction intermediates (phthalazine, dimers) and oPD. These findings provide insights into the PL mechanism of this type of CDs and may guide the further development of tunable CDs for tailored properties.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":" ","pages":"298"},"PeriodicalIF":19.4000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561683/pdf/","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-022-00984-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 44
Abstract
Carbon dots (CDs) as the advancing fluorescent carbon nanomaterial have superior potential and prospective. However, the ambiguous photoluminescence (PL) mechanism and intricate structure-function relationship become the greatest hindrances in the development and applications of CDs. Herein, red emissive CDs were synthesized in high yield from o-phenylenediamine (oPD) and catechol (CAT). The PL mechanism of the CDs is considered as the molecular state fluorophores because 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) is separated and exhibits the same PL properties and behavior as the CDs. These include the peak position and shape of the PL emission and PL excitation and the emission dependence on pH and solvent polarity. Both of them display close PL lifetime decays. Based on these, we deduce that DHQP is the fluorophore of the red emissive CDs and the PL mechanism of CDs is similar to DHQP. During the PL emission of CDs, the electron of the molecule state can transfer to CDs. The formation process of DHQP is further confirmed by the reaction intermediates (phthalazine, dimers) and oPD. These findings provide insights into the PL mechanism of this type of CDs and may guide the further development of tunable CDs for tailored properties.
期刊介绍:
Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.