Tailoring the properties of chitosan by grafting with 2-mercaptobenzoic acid to improve mucoadhesion: in silico studies, synthesis and characterization.

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Progress in Biomaterials Pub Date : 2022-12-01 Epub Date: 2022-10-07 DOI:10.1007/s40204-022-00201-x
Tejinder K Marwaha, Ashwini Madgulkar, Mangesh Bhalekar, Kalyani Asgaonkar, Rajesh Gachche, Pallavi Shewale
{"title":"Tailoring the properties of chitosan by grafting with 2-mercaptobenzoic acid to improve mucoadhesion: in silico studies, synthesis and characterization.","authors":"Tejinder K Marwaha,&nbsp;Ashwini Madgulkar,&nbsp;Mangesh Bhalekar,&nbsp;Kalyani Asgaonkar,&nbsp;Rajesh Gachche,&nbsp;Pallavi Shewale","doi":"10.1007/s40204-022-00201-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mucoadhesive polymers improve oral bioavailability of drugs by prolonging the duration of adhesion of drugs with mucosa. Various methods could be employed to address the problems of mucoadhesive polymers like weak adhesion forces. Chemical modification of polymers, such as the addition of a thiol group or thiolation, is another way for improving the polymers' mucoadhesive properties that is studied in present research work. A novel thiomer of chitosan was prepared by attaching 2-mercaptobenzoic acid, a hydrophobic ligand onto it. The docking of thiomer and chitosan with mucin structure showed higher binding energy for former. The prepared thiomer was subjected to X-ray diffraction and DSC which established reduction in crystallinity and formation of a new compound through changes in glass transition, melting point and change in diffraction pattern. The NMR studies established conjugation of 2-mercapto benzoic acid to chitosan. The increased mucoadhesion in thiomer behaviour (2-3 fold) was confirmed through mucus glycoprotein assay as well as through texture analysis. The permeation enhancing the property of thiomer was established by demonstrating the permeation of phenol red across thiomer treated intestinal membrane. An in vitro cell toxicity assay was done to establish toxicity of chitosan and thiolated chitosan. Finally, the reduced water uptake of thiomer over chitosan proved that the increase in mucoadhesion is not contributed by swelling. Thus, a thiomer with improved mucoadhesion and enhanced permeation properties was prepared and characterized. Hence, all these properties render the newly synthesized polymer a better alternative to chitosan as an excipient for mucoadhesive drug delivery systems.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"11 4","pages":"397-408"},"PeriodicalIF":4.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626691/pdf/40204_2022_Article_201.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00201-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Mucoadhesive polymers improve oral bioavailability of drugs by prolonging the duration of adhesion of drugs with mucosa. Various methods could be employed to address the problems of mucoadhesive polymers like weak adhesion forces. Chemical modification of polymers, such as the addition of a thiol group or thiolation, is another way for improving the polymers' mucoadhesive properties that is studied in present research work. A novel thiomer of chitosan was prepared by attaching 2-mercaptobenzoic acid, a hydrophobic ligand onto it. The docking of thiomer and chitosan with mucin structure showed higher binding energy for former. The prepared thiomer was subjected to X-ray diffraction and DSC which established reduction in crystallinity and formation of a new compound through changes in glass transition, melting point and change in diffraction pattern. The NMR studies established conjugation of 2-mercapto benzoic acid to chitosan. The increased mucoadhesion in thiomer behaviour (2-3 fold) was confirmed through mucus glycoprotein assay as well as through texture analysis. The permeation enhancing the property of thiomer was established by demonstrating the permeation of phenol red across thiomer treated intestinal membrane. An in vitro cell toxicity assay was done to establish toxicity of chitosan and thiolated chitosan. Finally, the reduced water uptake of thiomer over chitosan proved that the increase in mucoadhesion is not contributed by swelling. Thus, a thiomer with improved mucoadhesion and enhanced permeation properties was prepared and characterized. Hence, all these properties render the newly synthesized polymer a better alternative to chitosan as an excipient for mucoadhesive drug delivery systems.

用2-巯基苯甲酸接枝修饰壳聚糖的性能以改善黏附:硅研究、合成和表征。
黏附聚合物通过延长药物与粘膜的黏附时间来提高药物的口服生物利用度。各种方法可以用来解决粘接聚合物的粘接力弱等问题。聚合物的化学改性,如添加巯基或硫代化,是目前研究的另一种改善聚合物粘接性能的方法。以疏水配体2-巯基苯甲酸为载体,制备了一种新型壳聚糖硫聚体。具有粘蛋白结构的硫聚物与壳聚糖对接,前者具有较高的结合能。对所制备的硫聚物进行了x射线衍射和DSC分析,通过玻璃化转变、熔点和衍射模式的变化确定了结晶度的降低和新化合物的形成。核磁共振研究证实了2-巯基苯甲酸与壳聚糖的结合。黏液糖蛋白测定和结构分析证实了硫聚体黏附行为的增加(2-3倍)。通过证明酚红在硫聚物处理后的肠道膜上的渗透作用,确立了硫聚物的渗透增强作用。采用体外细胞毒性实验确定壳聚糖和硫代壳聚糖的毒性。最后,硫聚物的吸水率比壳聚糖低,证明了黏附的增加不是由肿胀引起的。因此,制备了一种具有改善黏附和增强渗透性能的硫聚物并对其进行了表征。因此,所有这些特性使新合成的聚合物成为壳聚糖的更好替代品,作为粘接给药系统的赋形剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信