KAGE: fast alignment-free graph-based genotyping of SNPs and short indels.

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences
Ivar Grytten, Knut Dagestad Rand, Geir Kjetil Sandve
{"title":"KAGE: fast alignment-free graph-based genotyping of SNPs and short indels.","authors":"Ivar Grytten,&nbsp;Knut Dagestad Rand,&nbsp;Geir Kjetil Sandve","doi":"10.1186/s13059-022-02771-2","DOIUrl":null,"url":null,"abstract":"<p><p>Genotyping is a core application of high-throughput sequencing. We present KAGE, a genotyper for SNPs and short indels that is inspired by recent developments within graph-based genome representations and alignment-free methods. KAGE uses a pan-genome representation of the population to efficiently and accurately predict genotypes. Two novel ideas improve both the speed and accuracy: a Bayesian model incorporates genotypes from thousands of individuals to improve prediction accuracy, and a computationally efficient method leverages correlation between variants. We show that the accuracy of KAGE is at par with the best existing alignment-free genotypers, while being an order of magnitude faster.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"23 1","pages":"209"},"PeriodicalIF":12.3000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531401/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-022-02771-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Genotyping is a core application of high-throughput sequencing. We present KAGE, a genotyper for SNPs and short indels that is inspired by recent developments within graph-based genome representations and alignment-free methods. KAGE uses a pan-genome representation of the population to efficiently and accurately predict genotypes. Two novel ideas improve both the speed and accuracy: a Bayesian model incorporates genotypes from thousands of individuals to improve prediction accuracy, and a computationally efficient method leverages correlation between variants. We show that the accuracy of KAGE is at par with the best existing alignment-free genotypers, while being an order of magnitude faster.

Abstract Image

Abstract Image

Abstract Image

KAGE:快速无比对图的snp和短索引基因分型。
基因分型是高通量测序的核心应用。我们提出了KAGE,这是一种snp和短索引的基因型,灵感来自最近基于图的基因组表示和无比对方法的发展。KAGE使用群体的泛基因组表示来有效和准确地预测基因型。有两种新思想提高了预测的速度和准确性:一种是贝叶斯模型,它结合了来自数千个人的基因型,以提高预测的准确性;另一种是计算效率高的方法,利用了变异之间的相关性。我们表明,KAGE的准确性与现有的最佳无比对基因型相当,同时速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信