{"title":"Proteomic Applications in Aquatic Environment Studies.","authors":"Nadeeka Thushari Gajahin Gamage, Rina Miyashita, Kazutaka Takahashi, Shuichi Asakawa, Jayan Duminda Mahesh Senevirathna","doi":"10.3390/proteomes10030032","DOIUrl":null,"url":null,"abstract":"<p><p>Genome determines the unique individualities of organisms; however, proteins play significant roles in the generation of the colorful life forms below water. Aquatic systems are usually complex and multifaceted and can take on unique modifications and adaptations to environmental changes by altering proteins at the cellular level. Proteomics is an essential strategy for exploring aquatic ecosystems due to the diverse involvement of proteins, proteoforms, and their complexity in basic and advanced cellular functions. Proteomics can expedite the analysis of molecular mechanisms underlying biological processes in an aquatic environment. Previous proteomic studies on aquatic environments have mainly focused on pollution assessments, ecotoxicology, their role in the food industry, and extraction and identification of natural products. Aquatic protein biomarkers have been comprehensively reported and are currently extensively applied in the pharmaceutical and medical industries. Cellular- and molecular-level responses of organisms can be used as indicators of environmental changes and stresses. Conversely, environmental changes are expedient in predicting aquatic health and productivity, which are crucial for ecosystem management and conservation. Recent advances in proteomics have contributed to the development of sustainable aquaculture, seafood safety, and high aquatic food production. Proteomic approaches have expanded to other aspects of the aquatic environment, such as protein fingerprinting for species identification. In this review, we encapsulated current proteomic applications and evaluated the potential strengths, weaknesses, opportunities, and threats of proteomics for future aquatic environmental studies. The review identifies both pros and cons of aquatic proteomics and projects potential challenges and recommendations. We postulate that proteomics is an emerging, powerful, and integrated omics approach for aquatic environmental studies.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505238/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes10030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Genome determines the unique individualities of organisms; however, proteins play significant roles in the generation of the colorful life forms below water. Aquatic systems are usually complex and multifaceted and can take on unique modifications and adaptations to environmental changes by altering proteins at the cellular level. Proteomics is an essential strategy for exploring aquatic ecosystems due to the diverse involvement of proteins, proteoforms, and their complexity in basic and advanced cellular functions. Proteomics can expedite the analysis of molecular mechanisms underlying biological processes in an aquatic environment. Previous proteomic studies on aquatic environments have mainly focused on pollution assessments, ecotoxicology, their role in the food industry, and extraction and identification of natural products. Aquatic protein biomarkers have been comprehensively reported and are currently extensively applied in the pharmaceutical and medical industries. Cellular- and molecular-level responses of organisms can be used as indicators of environmental changes and stresses. Conversely, environmental changes are expedient in predicting aquatic health and productivity, which are crucial for ecosystem management and conservation. Recent advances in proteomics have contributed to the development of sustainable aquaculture, seafood safety, and high aquatic food production. Proteomic approaches have expanded to other aspects of the aquatic environment, such as protein fingerprinting for species identification. In this review, we encapsulated current proteomic applications and evaluated the potential strengths, weaknesses, opportunities, and threats of proteomics for future aquatic environmental studies. The review identifies both pros and cons of aquatic proteomics and projects potential challenges and recommendations. We postulate that proteomics is an emerging, powerful, and integrated omics approach for aquatic environmental studies.
ProteomesBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍:
Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics