Yuqing Li, Zehua Han, Changli Ma, Liang Hong, Yanwei Ding, Ye Chen, Junpeng Zhao, Dong Liu, Guangai Sun, Taisen Zuo, He Cheng, Charles C Han
{"title":"Structure and dynamics of supercooled water in the hydration layer of poly(ethylene glycol).","authors":"Yuqing Li, Zehua Han, Changli Ma, Liang Hong, Yanwei Ding, Ye Chen, Junpeng Zhao, Dong Liu, Guangai Sun, Taisen Zuo, He Cheng, Charles C Han","doi":"10.1063/4.0000158","DOIUrl":null,"url":null,"abstract":"<p><p>The statics and dynamics of supercooled water in the hydration layer of poly(ethylene glycol) (PEG) were studied by a combination of quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. Two samples, that is, hydrogenated PEG/deuterated water (h-PEG/D<sub>2</sub>O) and fully deuterated PEG/hydrogenated water (d-PEG/H<sub>2</sub>O) with the same molar ratio of ethylene glycol (EG) monomer to water, 1:1, are compared. The QENS data of h-PEG/D<sub>2</sub>O show the dynamics of PEG, and that of d-PEG/H<sub>2</sub>O reveals the motion of water. The temperature-dependent elastic scattering intensity of both samples has shown transitions at supercooled temperature, and these transition temperatures depend on the energy resolution of the instruments. Therefore, neither one is a phase transition, but undergoes dynamic process. The dynamic of water can be described as an Arrhenius to super-Arrhenius transition, and it reveals the hydrogen bonding network relaxation of hydration water around PEG at supercooled temperature. Since the PEG-water hydrogen bond structural relaxation time from MD is in good agreement with the average relaxation time from QENS (d-PEG/H<sub>2</sub>O), MD may further reveal the atomic pictures of the supercooled hydration water. It shows that hydration water molecules form a series of pools around the hydrophilic oxygen atom of PEG. At supercooled temperature, they have a more bond ordered structure than bulk water, proceed a trapping sites diffusion on the PEG surface, and facilitate the structural relaxation of PEG backbone.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9462885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000158","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The statics and dynamics of supercooled water in the hydration layer of poly(ethylene glycol) (PEG) were studied by a combination of quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. Two samples, that is, hydrogenated PEG/deuterated water (h-PEG/D2O) and fully deuterated PEG/hydrogenated water (d-PEG/H2O) with the same molar ratio of ethylene glycol (EG) monomer to water, 1:1, are compared. The QENS data of h-PEG/D2O show the dynamics of PEG, and that of d-PEG/H2O reveals the motion of water. The temperature-dependent elastic scattering intensity of both samples has shown transitions at supercooled temperature, and these transition temperatures depend on the energy resolution of the instruments. Therefore, neither one is a phase transition, but undergoes dynamic process. The dynamic of water can be described as an Arrhenius to super-Arrhenius transition, and it reveals the hydrogen bonding network relaxation of hydration water around PEG at supercooled temperature. Since the PEG-water hydrogen bond structural relaxation time from MD is in good agreement with the average relaxation time from QENS (d-PEG/H2O), MD may further reveal the atomic pictures of the supercooled hydration water. It shows that hydration water molecules form a series of pools around the hydrophilic oxygen atom of PEG. At supercooled temperature, they have a more bond ordered structure than bulk water, proceed a trapping sites diffusion on the PEG surface, and facilitate the structural relaxation of PEG backbone.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.