Facilitating large data management in research contexts.

Daniel Andresen, Gerrick Teague
{"title":"Facilitating large data management in research contexts.","authors":"Daniel Andresen,&nbsp;Gerrick Teague","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Research data management is becoming increasingly complex as the amount of data, metadata and code increases. Often, researchers must obtain multidisciplinary skills to acquire, transfer, share, and compute large datasets. In this paper we present the results of an investigation into providing a familiar web-based experience for researchers to manage their data and code, leveraging popular, well-funded tools and services. We show how researchers can save time and avoid mistakes, and we provide a detailed discussion of our system architecture and implementation, and summarize the new capabilities, and time savings which can be achieved.</p>","PeriodicalId":72112,"journal":{"name":"ADVCOMP ... the ... International Conference on Advanced Engineering Computing and Applications in Sciences","volume":" ","pages":"36-43"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446462/pdf/nihms-1831850.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVCOMP ... the ... International Conference on Advanced Engineering Computing and Applications in Sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research data management is becoming increasingly complex as the amount of data, metadata and code increases. Often, researchers must obtain multidisciplinary skills to acquire, transfer, share, and compute large datasets. In this paper we present the results of an investigation into providing a familiar web-based experience for researchers to manage their data and code, leveraging popular, well-funded tools and services. We show how researchers can save time and avoid mistakes, and we provide a detailed discussion of our system architecture and implementation, and summarize the new capabilities, and time savings which can be achieved.

促进研究环境中的大数据管理。
随着数据、元数据和代码数量的增加,研究数据管理变得越来越复杂。通常,研究人员必须获得多学科技能来获取、转移、共享和计算大型数据集。在本文中,我们展示了一项调查的结果,该调查旨在为研究人员提供一种熟悉的基于web的体验,以利用流行的、资金充足的工具和服务来管理他们的数据和代码。我们向研究人员展示了如何节省时间和避免错误,并详细讨论了我们的系统架构和实现,并总结了可以实现的新功能和节省的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信