{"title":"Dynamic Network Prediction.","authors":"Ravi Goyal Mathematica, Victor De Gruttola","doi":"10.1017/nws.2020.24","DOIUrl":null,"url":null,"abstract":"<p><p>We present a statistical framework for generating predicted dynamic networks based on the observed evolution of social relationships in a population. The framework includes a novel and flexible procedure to sample dynamic networks given a probability distribution on evolving network properties; it permits the use of a broad class of approaches to model trends, seasonal variability, uncertainty, and changes in population composition. Current methods do not account for the variability in the observed historical networks when predicting the network structure; the proposed method provides a principled approach to incorporate uncertainty in prediction. This advance aids in the designing of network-based interventions, as development of such interventions often requires prediction of the network structure in the presence and absence of the intervention. Two simulation studies are conducted to demonstrate the usefulness of generating predicted networks when designing network-based interventions. The framework is also illustrated by investigating results of potential interventions on bill passage rates using a dynamic network that represents the sponsor/co-sponsor relationships among senators derived from bills introduced in the US Senate from 2003-2016.</p>","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/nws.2020.24","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2020.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
We present a statistical framework for generating predicted dynamic networks based on the observed evolution of social relationships in a population. The framework includes a novel and flexible procedure to sample dynamic networks given a probability distribution on evolving network properties; it permits the use of a broad class of approaches to model trends, seasonal variability, uncertainty, and changes in population composition. Current methods do not account for the variability in the observed historical networks when predicting the network structure; the proposed method provides a principled approach to incorporate uncertainty in prediction. This advance aids in the designing of network-based interventions, as development of such interventions often requires prediction of the network structure in the presence and absence of the intervention. Two simulation studies are conducted to demonstrate the usefulness of generating predicted networks when designing network-based interventions. The framework is also illustrated by investigating results of potential interventions on bill passage rates using a dynamic network that represents the sponsor/co-sponsor relationships among senators derived from bills introduced in the US Senate from 2003-2016.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.