Inference on spatial heterogeneity in tumor microenvironment using spatial transcriptomics data

Antara Biswas, Bassel Ghaddar, Gregory Riedlinger, Subhajyoti De
{"title":"Inference on spatial heterogeneity in tumor microenvironment using spatial transcriptomics data","authors":"Antara Biswas,&nbsp;Bassel Ghaddar,&nbsp;Gregory Riedlinger,&nbsp;Subhajyoti De","doi":"10.1002/cso2.1043","DOIUrl":null,"url":null,"abstract":"<p>In the tumor microenvironment (TME), functional interactions among tumor, immune, and stromal cells and the extracellular matrix play key roles in tumor progression, invasion, immune modulation, and response to treatment. Intra-tumor heterogeneity is ubiquitous not only at the genetic and transcriptomic levels but also in the composition and characteristics of TME. However, quantitative inference on spatial heterogeneity in the TME is still limited. Here, we propose a framework to use network graph-based spatial statistical models on spatially annotated molecular data to gain insights into modularity and spatial heterogeneity in the TME. Applying the framework to spatial transcriptomics data from pancreatic ductal adenocarcinoma samples, we observed significant global and local spatially correlated patterns in the abundance score of tumor cells; in contrast, immune cell types showed dispersed patterns in the TME. Hypoxia, EMT, and inflammation signatures contributed to intra-tumor spatial variations. Spatial patterns in cell type abundance and pathway signatures in the TME potentially impact tumor growth dynamics and cancer hallmarks. Tumor biopsies are integral to the diagnosis and clinical management of cancer patients; our data suggest that owing to intra-tumor non-genetic spatial heterogeneity, individual biopsies may underappreciate the extent of clinically relevant, functional variations across geographic regions within tumors.</p>","PeriodicalId":72658,"journal":{"name":"Computational and systems oncology","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410565/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and systems oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cso2.1043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the tumor microenvironment (TME), functional interactions among tumor, immune, and stromal cells and the extracellular matrix play key roles in tumor progression, invasion, immune modulation, and response to treatment. Intra-tumor heterogeneity is ubiquitous not only at the genetic and transcriptomic levels but also in the composition and characteristics of TME. However, quantitative inference on spatial heterogeneity in the TME is still limited. Here, we propose a framework to use network graph-based spatial statistical models on spatially annotated molecular data to gain insights into modularity and spatial heterogeneity in the TME. Applying the framework to spatial transcriptomics data from pancreatic ductal adenocarcinoma samples, we observed significant global and local spatially correlated patterns in the abundance score of tumor cells; in contrast, immune cell types showed dispersed patterns in the TME. Hypoxia, EMT, and inflammation signatures contributed to intra-tumor spatial variations. Spatial patterns in cell type abundance and pathway signatures in the TME potentially impact tumor growth dynamics and cancer hallmarks. Tumor biopsies are integral to the diagnosis and clinical management of cancer patients; our data suggest that owing to intra-tumor non-genetic spatial heterogeneity, individual biopsies may underappreciate the extent of clinically relevant, functional variations across geographic regions within tumors.

Abstract Image

利用空间转录组学数据推断肿瘤微环境的空间异质性。
在肿瘤微环境(TME)中,肿瘤、免疫细胞、基质细胞和细胞外基质之间的功能相互作用在肿瘤进展、侵袭、免疫调节和对治疗的反应中起着关键作用。肿瘤内的异质性不仅在遗传和转录水平上普遍存在,而且在TME的组成和特征上也普遍存在。然而,对TME空间异质性的定量推断仍然有限。在这里,我们提出了一个框架,利用基于网络图的空间统计模型对空间标注的分子数据进行分析,以深入了解TME的模块性和空间异质性。将该框架应用于胰腺导管腺癌样本的空间转录组学数据,我们观察到肿瘤细胞丰度评分中显著的全局和局部空间相关模式;相比之下,免疫细胞类型在TME中呈现分散模式。缺氧、EMT和炎症特征有助于肿瘤内的空间变化。细胞类型丰度的空间模式和TME中的通路特征可能影响肿瘤生长动力学和癌症特征。肿瘤活检是癌症患者诊断和临床管理不可或缺的一部分;我们的数据表明,由于肿瘤内的非遗传空间异质性,个体活检可能低估了肿瘤内跨地理区域的临床相关功能差异的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信