Equivariant Oka theory: survey of recent progress.

Complex analysis and its synergies Pub Date : 2022-01-01 Epub Date: 2022-08-24 DOI:10.1007/s40627-022-00103-5
Frank Kutzschebauch, Finnur Lárusson, Gerald W Schwarz
{"title":"Equivariant Oka theory: survey of recent progress.","authors":"Frank Kutzschebauch,&nbsp;Finnur Lárusson,&nbsp;Gerald W Schwarz","doi":"10.1007/s40627-022-00103-5","DOIUrl":null,"url":null,"abstract":"<p><p>We survey recent work, published since 2015, on equivariant Oka theory. The main results described in the survey are as follows. Homotopy principles for equivariant isomorphisms of Stein manifolds on which a reductive complex Lie group <i>G</i> acts. Applications to the linearisation problem. A parametric Oka principle for sections of a bundle <i>E</i> of homogeneous spaces for a group bundle <math><mi>G</mi></math> , all over a reduced Stein space <i>X</i> with compatible actions of a reductive complex group on <i>E</i>, <math><mi>G</mi></math> , and <i>X</i>. Application to the classification of generalised principal bundles with a group action. Finally, an equivariant version of Gromov's Oka principle based on a notion of a <i>G</i>-manifold being <i>G</i>-Oka.</p>","PeriodicalId":87237,"journal":{"name":"Complex analysis and its synergies","volume":"8 3","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402526/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex analysis and its synergies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40627-022-00103-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We survey recent work, published since 2015, on equivariant Oka theory. The main results described in the survey are as follows. Homotopy principles for equivariant isomorphisms of Stein manifolds on which a reductive complex Lie group G acts. Applications to the linearisation problem. A parametric Oka principle for sections of a bundle E of homogeneous spaces for a group bundle G , all over a reduced Stein space X with compatible actions of a reductive complex group on E, G , and X. Application to the classification of generalised principal bundles with a group action. Finally, an equivariant version of Gromov's Oka principle based on a notion of a G-manifold being G-Oka.

Abstract Image

等变Oka理论:最新进展综述。
我们调查了自2015年以来发表的关于等变Oka理论的最新研究。调查中描述的主要结果如下。复李群G作用于Stein流形的等变同构的同伦原理。线性化问题的应用。关于群束G在约化Stein空间X上具有约化复群在E、G、X上的相容作用的齐次空间束E的截面的参数Oka原理。最后,基于g流形为G-Oka的概念,给出了Gromov的Oka原理的等变版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信