Comparison of activity of OsDmc1A recombinase of rice (Oryza sativa) in presence of Ca2+ and Mg2+ ions.

IF 1.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rajani Kant Chittela, Michael Melzer, Jayashree Krishna Sainis
{"title":"Comparison of activity of OsDmc1A recombinase of rice (Oryza sativa) in presence of Ca2+ and Mg2+ ions.","authors":"Rajani Kant Chittela,&nbsp;Michael Melzer,&nbsp;Jayashree Krishna Sainis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinases are known to play an important role in the homology search and strand exchange during meiosis as well as homologous recombination (HR)-mediated DNA repair specifically require Mg2+ ion for their activity. The Ca2+ has been shown to stimulate the strand exchange activity of hDmc1 and ScDmc1 by forming the extended filaments on DNA. Oryza sativa disrupted meiotic cDNA1A (OsDmc1A), a homologue of yeast and human Dmc1 from rice shows the hallmark functions of recombinase. Here, we report the effects of Ca2+ and Mg2+ on OsDmc1A activity from rice (Oryza sativa). OsDmc1A showed a concentration-dependent binding with both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) substrates in presence of Mg2+ or Ca2+. The ssDNA and dsDNA binding activities, as well as renaturation activity of OsDmc1A were similar in the presence of Ca2+ or Mg2+. Increasing the Ca2+ or Mg2+ increased the DNA binding, renaturation and strand exchange of OsDmc1A. But, OsDmc1A showed only a slight stimulation of strand exchange activity in presence of Ca2+, when compared the activity in presence of Mg2+. Electron microscopy showed that OsDmc1A formed ring-like structures in presence of Mg2+ or Ca2+. However, OsDmc1A formed filament like structures with both ss and dsDNA in presence of Mg2+ or Ca2+. Taken together, Ca2+ did not affect OsDmc1A recombinase activity significantly.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"52 2","pages":"161-8"},"PeriodicalIF":1.5000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recombinases are known to play an important role in the homology search and strand exchange during meiosis as well as homologous recombination (HR)-mediated DNA repair specifically require Mg2+ ion for their activity. The Ca2+ has been shown to stimulate the strand exchange activity of hDmc1 and ScDmc1 by forming the extended filaments on DNA. Oryza sativa disrupted meiotic cDNA1A (OsDmc1A), a homologue of yeast and human Dmc1 from rice shows the hallmark functions of recombinase. Here, we report the effects of Ca2+ and Mg2+ on OsDmc1A activity from rice (Oryza sativa). OsDmc1A showed a concentration-dependent binding with both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) substrates in presence of Mg2+ or Ca2+. The ssDNA and dsDNA binding activities, as well as renaturation activity of OsDmc1A were similar in the presence of Ca2+ or Mg2+. Increasing the Ca2+ or Mg2+ increased the DNA binding, renaturation and strand exchange of OsDmc1A. But, OsDmc1A showed only a slight stimulation of strand exchange activity in presence of Ca2+, when compared the activity in presence of Mg2+. Electron microscopy showed that OsDmc1A formed ring-like structures in presence of Mg2+ or Ca2+. However, OsDmc1A formed filament like structures with both ss and dsDNA in presence of Mg2+ or Ca2+. Taken together, Ca2+ did not affect OsDmc1A recombinase activity significantly.

Ca2+和Mg2+存在下水稻OsDmc1A重组酶活性的比较
重组酶在减数分裂期间的同源性搜索和链交换以及同源重组(HR)介导的DNA修复中发挥重要作用,它们的活性特别需要Mg2+离子。Ca2+已被证明通过在DNA上形成延伸的细丝来刺激hDmc1和ScDmc1的链交换活性。水稻分裂的cDNA1A (OsDmc1A)是酵母和人类Dmc1的同源物,显示了重组酶的标志性功能。在这里,我们报道了Ca2+和Mg2+对水稻OsDmc1A活性的影响。在Mg2+或Ca2+存在的情况下,OsDmc1A与单链DNA (ssDNA)和双链DNA (dsDNA)底物均显示出浓度依赖性结合。在Ca2+或Mg2+存在下,OsDmc1A的ssDNA和dsDNA结合活性以及还原活性相似。增加Ca2+或Mg2+增加了OsDmc1A的DNA结合、再生和链交换。但是,与Mg2+存在时的活性相比,OsDmc1A在Ca2+存在时仅表现出轻微的链交换活性刺激。电镜显示OsDmc1A在Mg2+或Ca2+存在下形成环状结构。然而,OsDmc1A在Mg2+或Ca2+存在下与ss和dsDNA形成丝状结构。综上所述,Ca2+没有显著影响OsDmc1A重组酶的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian journal of biochemistry & biophysics
Indian journal of biochemistry & biophysics 生物-生化与分子生物学
CiteScore
2.90
自引率
50.00%
发文量
88
审稿时长
3 months
期刊介绍: Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB. Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信