Speech function of the oropharyngeal isthmus: A modeling study.

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Bryan Gick, Peter Anderson, Hui Chen, Chenhao Chiu, Ho Beom Kwon, Ian Stavness, Ling Tsou, Sidney Fels
{"title":"Speech function of the oropharyngeal isthmus: A modeling study.","authors":"Bryan Gick,&nbsp;Peter Anderson,&nbsp;Hui Chen,&nbsp;Chenhao Chiu,&nbsp;Ho Beom Kwon,&nbsp;Ian Stavness,&nbsp;Ling Tsou,&nbsp;Sidney Fels","doi":"10.1080/21681163.2013.851627","DOIUrl":null,"url":null,"abstract":"<p><p>A finite element method (FEM) based numerical model of upper airway structures (jaw, tongue, maxilla, soft palate) was implemented to observe interactions between the soft palate and tongue, and in particular to distinguish the contributions of individual muscles in producing speech-relevant constrictions of the oropharyngeal isthmus (OPI), or \"uvular\" region of the oral tract. Simulations revealed a sphincter-like general operation for the OPI, particularly with regard to the function of the palatoglossus muscle. Further, as has been observed with the lips, the OPI can be controlled by multiple distinct muscular mechanisms, each reliably producing a different sized opening and robust to activation noise, suggestive of a modular view of speech motor control. As off-midline structures of the OPI are difficult to observe during speech production, biomechanical simulation offers a promising approach to studying these structures.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21681163.2013.851627","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2013.851627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 28

Abstract

A finite element method (FEM) based numerical model of upper airway structures (jaw, tongue, maxilla, soft palate) was implemented to observe interactions between the soft palate and tongue, and in particular to distinguish the contributions of individual muscles in producing speech-relevant constrictions of the oropharyngeal isthmus (OPI), or "uvular" region of the oral tract. Simulations revealed a sphincter-like general operation for the OPI, particularly with regard to the function of the palatoglossus muscle. Further, as has been observed with the lips, the OPI can be controlled by multiple distinct muscular mechanisms, each reliably producing a different sized opening and robust to activation noise, suggestive of a modular view of speech motor control. As off-midline structures of the OPI are difficult to observe during speech production, biomechanical simulation offers a promising approach to studying these structures.

Abstract Image

Abstract Image

口咽峡语言功能的模型研究。
采用基于有限元法(FEM)的上呼吸道结构(颌骨、舌头、上颌骨、软腭)数值模型,观察软腭和舌头之间的相互作用,特别是区分个体肌肉在产生口咽峡(OPI)或口腔“小舌”区域的语言相关收缩中的作用。模拟结果显示,对上睑肌进行了类似括约肌的一般手术,特别是腭舌肌的功能。此外,正如在嘴唇上观察到的那样,OPI可以由多种不同的肌肉机制控制,每一种机制都能可靠地产生不同大小的开口,并且对激活噪声具有鲁强性,这表明了语言运动控制的模块化观点。由于在语音产生过程中很难观察到OPI的中线外结构,生物力学模拟为研究这些结构提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.20%
发文量
102
期刊介绍: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信