Manuela Gorgel, Andreas Bøggild, Jakob Jensen Ulstrup, Manfred S Weiss, Uwe Müller, Poul Nissen, Thomas Boesen
{"title":"Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD.","authors":"Manuela Gorgel, Andreas Bøggild, Jakob Jensen Ulstrup, Manfred S Weiss, Uwe Müller, Poul Nissen, Thomas Boesen","doi":"10.1107/S1399004715003272","DOIUrl":null,"url":null,"abstract":"<p><p>Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 5","pages":"1095-101"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715003272","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section D, Biological crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S1399004715003272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.