Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age-structure.
IF 1.5 4区 生物学Q4 Agricultural and Biological Sciences
{"title":"Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age-structure.","authors":"Katell Guizien, Lorenzo Bramanti","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Connectivity is currently emphasized as a key factor in conservation for its role in enhancing biodiversity of an area and giving benefit to the adjacent areas. For most marine species, connectivity is synonomous of larval dispersal. We applied a spatially explicit meta-population model to test the hypothesis that larval dispersal can affect local demographical features, consequently misleading conservation practice in the marine environment. Simulations were carried out in the Gulf of Lions where coastal circulation displays highly variable temporal and spatial submeso-scale structures. Two different benthic invertebrate species were considered: a soft bottom short lived species and a hard bottom long lived one. In the first case, simulations showed that highest densities at equilibrium do not inform on self-persistent populations location. In the second case, simulations showed that connectivity effects may result in out-of-equilibria demographical structure. We emphasized the caveats in the parameterization of demographical models when local demography is controlled by connectivity.</p>","PeriodicalId":54453,"journal":{"name":"Theoretical Biology Forum","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology Forum","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Connectivity is currently emphasized as a key factor in conservation for its role in enhancing biodiversity of an area and giving benefit to the adjacent areas. For most marine species, connectivity is synonomous of larval dispersal. We applied a spatially explicit meta-population model to test the hypothesis that larval dispersal can affect local demographical features, consequently misleading conservation practice in the marine environment. Simulations were carried out in the Gulf of Lions where coastal circulation displays highly variable temporal and spatial submeso-scale structures. Two different benthic invertebrate species were considered: a soft bottom short lived species and a hard bottom long lived one. In the first case, simulations showed that highest densities at equilibrium do not inform on self-persistent populations location. In the second case, simulations showed that connectivity effects may result in out-of-equilibria demographical structure. We emphasized the caveats in the parameterization of demographical models when local demography is controlled by connectivity.