{"title":"Alternative divalent cations (Zn²⁺, Co²⁺, and Mn²⁺) are not mutagenic at conditions optimal for HIV-1 reverse transcriptase activity.","authors":"Vasudevan Achuthan, Jeffrey J DeStefano","doi":"10.1186/s12858-015-0041-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fidelity of DNA polymerases can be influenced by cation co-factors. Physiologically, Mg(2+) is used as a co-factor by HIV reverse transcriptase (RT) to perform catalysis; however, alternative cations including Mn(2+), Co(2+), and Zn(2+) can also support catalysis. Although Zn(2+) supports DNA synthesis, it inhibits HIV RT by significantly modifying RT catalysis. Zn(2+) is currently being investigated as a component of novel treatment options against HIV and we wanted to investigate the fidelity of RT with Zn(2+).</p><p><strong>Methods: </strong>We used PCR-based and plasmid-based alpha complementation assays as well as steady-state misinsertion and misincorporation assays to examine the fidelity of RT with Mn(2+), Co(2+), and Zn(2+).</p><p><strong>Results: </strong>The fidelity of DNA synthesis by HIV-1 RT was approximately 2.5 fold greater in Zn(2+) when compared to Mg(2+) at cation conditions optimized for nucleotide catalysis. Consistent with this, RT extended primers with mismatched 3' nucleotides poorly and inserted incorrect nucleotides less efficiently using Zn(2+) than Mg(2+). In agreement with previous literature, we observed that Mn(2+) and Co(2+) dramatically decreased the fidelity of RT at highly elevated concentrations (6 mM). However, surprisingly, the fidelity of HIV RT with Mn(2+) and Co(2+) remained similar to Mg(2+) at lower concentrations that are optimal for catalysis.</p><p><strong>Conclusion: </strong>This study shows that Zn(2+), at optimal extension conditions, increases the fidelity of HIV-1 RT and challenges the notion that alternative cations capable of supporting polymerase catalysis are inherently mutagenic.</p>","PeriodicalId":9113,"journal":{"name":"BMC Biochemistry","volume":"16 ","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12858-015-0041-x","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12858-015-0041-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8
Abstract
Background: Fidelity of DNA polymerases can be influenced by cation co-factors. Physiologically, Mg(2+) is used as a co-factor by HIV reverse transcriptase (RT) to perform catalysis; however, alternative cations including Mn(2+), Co(2+), and Zn(2+) can also support catalysis. Although Zn(2+) supports DNA synthesis, it inhibits HIV RT by significantly modifying RT catalysis. Zn(2+) is currently being investigated as a component of novel treatment options against HIV and we wanted to investigate the fidelity of RT with Zn(2+).
Methods: We used PCR-based and plasmid-based alpha complementation assays as well as steady-state misinsertion and misincorporation assays to examine the fidelity of RT with Mn(2+), Co(2+), and Zn(2+).
Results: The fidelity of DNA synthesis by HIV-1 RT was approximately 2.5 fold greater in Zn(2+) when compared to Mg(2+) at cation conditions optimized for nucleotide catalysis. Consistent with this, RT extended primers with mismatched 3' nucleotides poorly and inserted incorrect nucleotides less efficiently using Zn(2+) than Mg(2+). In agreement with previous literature, we observed that Mn(2+) and Co(2+) dramatically decreased the fidelity of RT at highly elevated concentrations (6 mM). However, surprisingly, the fidelity of HIV RT with Mn(2+) and Co(2+) remained similar to Mg(2+) at lower concentrations that are optimal for catalysis.
Conclusion: This study shows that Zn(2+), at optimal extension conditions, increases the fidelity of HIV-1 RT and challenges the notion that alternative cations capable of supporting polymerase catalysis are inherently mutagenic.
期刊介绍:
BMC Biochemistry is an open access journal publishing original peer-reviewed research articles in all aspects of biochemical processes, including the structure, function and dynamics of metabolic pathways, supramolecular complexes, enzymes, proteins, nucleic acids and small molecular components of organelles, cells and tissues. BMC Biochemistry (ISSN 1471-2091) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, Thomson Reuters (ISI) and Google Scholar.