Robert D Viveros, Alexander Liberman, William C Trogler, Andrew C Kummel
{"title":"Alkaline and ultrasonic dissolution of biological materials for trace silicon determination.","authors":"Robert D Viveros, Alexander Liberman, William C Trogler, Andrew C Kummel","doi":"10.1116/1.4916627","DOIUrl":null,"url":null,"abstract":"<p><p>A simple method for trace elemental determination in biological tissue has been developed. Novel nanomaterials with biomedical applications necessitate the determination of the <i>in vivo</i> fate of the materials to understand their toxicological profile. Hollow iron-doped calcined silica nanoshells have been used as a model to demonstrate that potassium hydroxide and bath sonication at 50 °C can extract elements from alkaline-soluble nanomaterials. After alkali digestion, nitric acid is used to adjust the <i>p</i>H into a suitable range for analysis using techniques such as inductively coupled plasma optical emission spectrometry which require neutral or acidic analytes. In chicken liver phantoms injected with the nanoshells, 96% of the expected silicon concentration was detected. This value was in good agreement with the 94% detection efficiency of nanoshells dissolved in aqueous solution as a control for potential sample matrix interference. Nanoshell detection was further confirmed in a mouse 24 h after intravenous administration; the measured silica above baseline was 35 times greater or more than the standard deviations of the measurements. This method provides a simple and accurate means to quantify alkaline-soluble nanomaterials in biological tissue.</p>","PeriodicalId":38110,"journal":{"name":"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385096/pdf/JVTBD9-000033-031803_1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/1.4916627","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/4/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A simple method for trace elemental determination in biological tissue has been developed. Novel nanomaterials with biomedical applications necessitate the determination of the in vivo fate of the materials to understand their toxicological profile. Hollow iron-doped calcined silica nanoshells have been used as a model to demonstrate that potassium hydroxide and bath sonication at 50 °C can extract elements from alkaline-soluble nanomaterials. After alkali digestion, nitric acid is used to adjust the pH into a suitable range for analysis using techniques such as inductively coupled plasma optical emission spectrometry which require neutral or acidic analytes. In chicken liver phantoms injected with the nanoshells, 96% of the expected silicon concentration was detected. This value was in good agreement with the 94% detection efficiency of nanoshells dissolved in aqueous solution as a control for potential sample matrix interference. Nanoshell detection was further confirmed in a mouse 24 h after intravenous administration; the measured silica above baseline was 35 times greater or more than the standard deviations of the measurements. This method provides a simple and accurate means to quantify alkaline-soluble nanomaterials in biological tissue.