GLOBAL PERFORMANCE PREDICTION FOR DIVERGENCE-BASED IMAGE REGISTRATION CRITERIA.

Kumar Sricharan, Raviv Raich, Alfred O Hero
{"title":"GLOBAL PERFORMANCE PREDICTION FOR DIVERGENCE-BASED IMAGE REGISTRATION CRITERIA.","authors":"Kumar Sricharan,&nbsp;Raviv Raich,&nbsp;Alfred O Hero","doi":"10.1109/SSP.2009.5278492","DOIUrl":null,"url":null,"abstract":"<p><p>Divergence measures find application in many areas of statistics, signal processing and machine learning, thus necessitating the need for good estimators of divergence measures. While several estimators of divergence measures have been proposed in literature, the performance of these estimators is not known. We propose a simple <i>k</i>NN density estimation based plug-in estimator for estimation of divergence measures. Based on the properties of <i>k</i>NN density estimates, we derive the bias, variance and mean square error xof the estimator in terms of the sample size, the dimension of the samples and the underlying probability distribution. Based on these results, we specify the optimal choice of tuning parameters for minimum mean square error. We also present results on convergence in distribution of the proposed estimator. These results will establish a basis for analyzing the performance of image registration methods that maximize divergence.</p>","PeriodicalId":90775,"journal":{"name":"... IEEE Statistical Signal Processing Workshop. IEEE Statistical Signal Processing Workshop","volume":"2009 ","pages":"654-657"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/SSP.2009.5278492","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE Statistical Signal Processing Workshop. IEEE Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2009.5278492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Divergence measures find application in many areas of statistics, signal processing and machine learning, thus necessitating the need for good estimators of divergence measures. While several estimators of divergence measures have been proposed in literature, the performance of these estimators is not known. We propose a simple kNN density estimation based plug-in estimator for estimation of divergence measures. Based on the properties of kNN density estimates, we derive the bias, variance and mean square error xof the estimator in terms of the sample size, the dimension of the samples and the underlying probability distribution. Based on these results, we specify the optimal choice of tuning parameters for minimum mean square error. We also present results on convergence in distribution of the proposed estimator. These results will establish a basis for analyzing the performance of image registration methods that maximize divergence.

Abstract Image

Abstract Image

Abstract Image

基于散度的图像配准准则的全局性能预测。
散度度量在统计学、信号处理和机器学习的许多领域都有应用,因此需要好的散度度量估计器。虽然文献中提出了几种散度测度的估计量,但这些估计量的性能尚不清楚。我们提出了一个简单的基于kNN密度估计的插件估计器来估计散度测度。基于kNN密度估计的性质,我们根据样本大小、样本维度和潜在概率分布推导出估计器的偏差、方差和均方误差x。基于这些结果,我们指定了最小均方误差的最优调谐参数选择。我们还给出了该估计量在分布上的收敛性的结果。这些结果将为分析最大发散度的图像配准方法的性能奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信