MMap: Fast Billion-Scale Graph Computation on a PC via Memory Mapping.

Zhiyuan Lin, Minsuk Kahng, Kaeser Md Sabrin, Duen Horng Polo Chau, Ho Lee, U Kang
{"title":"MMap: Fast Billion-Scale Graph Computation on a PC via Memory Mapping.","authors":"Zhiyuan Lin,&nbsp;Minsuk Kahng,&nbsp;Kaeser Md Sabrin,&nbsp;Duen Horng Polo Chau,&nbsp;Ho Lee,&nbsp;U Kang","doi":"10.1109/BigData.2014.7004226","DOIUrl":null,"url":null,"abstract":"<p><p>Graph computation approaches such as GraphChi and TurboGraph recently demonstrated that a single PC can perform efficient computation on billion-node graphs. To achieve high speed and scalability, they often need sophisticated data structures and memory management strategies. We propose a minimalist approach that forgoes such requirements, by leveraging the fundamental <i>memory mapping</i> (MMap) capability found on operating systems. We contribute: (1) a new insight that MMap is a viable technique for creating fast and scalable graph algorithms that surpasses some of the best techniques; (2) the design and implementation of popular graph algorithms for billion-scale graphs with little code, thanks to memory mapping; (3) extensive experiments on real graphs, including the 6.6 billion edge YahooWeb graph, and show that this new approach is significantly faster or comparable to the highly-optimized methods (e.g., 9.5× faster than GraphChi for computing PageRank on 1.47B edge Twitter graph). We believe our work provides a new direction in the design and development of scalable algorithms. Our packaged code is available at http://poloclub.gatech.edu/mmap/.</p>","PeriodicalId":74501,"journal":{"name":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","volume":"2014 ","pages":"159-164"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BigData.2014.7004226","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigData.2014.7004226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Graph computation approaches such as GraphChi and TurboGraph recently demonstrated that a single PC can perform efficient computation on billion-node graphs. To achieve high speed and scalability, they often need sophisticated data structures and memory management strategies. We propose a minimalist approach that forgoes such requirements, by leveraging the fundamental memory mapping (MMap) capability found on operating systems. We contribute: (1) a new insight that MMap is a viable technique for creating fast and scalable graph algorithms that surpasses some of the best techniques; (2) the design and implementation of popular graph algorithms for billion-scale graphs with little code, thanks to memory mapping; (3) extensive experiments on real graphs, including the 6.6 billion edge YahooWeb graph, and show that this new approach is significantly faster or comparable to the highly-optimized methods (e.g., 9.5× faster than GraphChi for computing PageRank on 1.47B edge Twitter graph). We believe our work provides a new direction in the design and development of scalable algorithms. Our packaged code is available at http://poloclub.gatech.edu/mmap/.

Abstract Image

Abstract Image

Abstract Image

MMap:通过内存映射在PC上的快速十亿尺度图形计算。
GraphChi和TurboGraph等图计算方法最近证明了单个PC机可以在十亿节点图上执行有效的计算。为了实现高速和可伸缩性,它们通常需要复杂的数据结构和内存管理策略。通过利用操作系统上的基本内存映射(MMap)功能,我们提出了一种放弃此类需求的极简方法。我们的贡献:(1)一个新的见解,即MMap是一种可行的技术,用于创建快速和可扩展的图形算法,超越了一些最好的技术;(2)利用内存映射技术,设计和实现了数十亿尺度图的流行图算法;(3)在真实图上进行了广泛的实验,包括66亿的YahooWeb边缘图,并表明这种新方法明显更快或与高度优化的方法相当(例如,在1.47B边缘Twitter图上计算PageRank比GraphChi快9.5倍)。我们相信我们的工作为可扩展算法的设计和开发提供了一个新的方向。我们的打包代码可在http://poloclub.gatech.edu/mmap/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信