MAGE: Matching Approximate Patterns in Richly-Attributed Graphs.

Robert Pienta, Acar Tamersoy, Hanghang Tong, Duen Horng Chau
{"title":"MAGE: Matching Approximate Patterns in Richly-Attributed Graphs.","authors":"Robert Pienta, Acar Tamersoy, Hanghang Tong, Duen Horng Chau","doi":"10.1109/BigData.2014.7004278","DOIUrl":null,"url":null,"abstract":"<p><p>Given a large graph with millions of nodes and edges, say a social network where both its nodes and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find subgraphs of interest (e.g., a ring of businessmen with strong ties)? We present MAGE, a scalable, multicore subgraph matching approach that supports expressive queries over large, richly-attributed graphs. Our major contributions include: (1) MAGE supports graphs with both node and edge attributes (most existing approaches handle either one, but not both); (2) it supports expressive queries, allowing multiple attributes on an edge, wildcards as attribute values (i.e., match <i>any</i> permissible values), and attributes with continuous values; and (3) it is scalable, supporting graphs with several hundred million edges. We demonstrate MAGE's effectiveness and scalability via extensive experiments on large real and synthetic graphs, such as a Google+ social network with <i>460 million</i> edges.</p>","PeriodicalId":74501,"journal":{"name":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","volume":"2014 ","pages":"585-590"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388251/pdf/nihms675787.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigData.2014.7004278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a large graph with millions of nodes and edges, say a social network where both its nodes and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find subgraphs of interest (e.g., a ring of businessmen with strong ties)? We present MAGE, a scalable, multicore subgraph matching approach that supports expressive queries over large, richly-attributed graphs. Our major contributions include: (1) MAGE supports graphs with both node and edge attributes (most existing approaches handle either one, but not both); (2) it supports expressive queries, allowing multiple attributes on an edge, wildcards as attribute values (i.e., match any permissible values), and attributes with continuous values; and (3) it is scalable, supporting graphs with several hundred million edges. We demonstrate MAGE's effectiveness and scalability via extensive experiments on large real and synthetic graphs, such as a Google+ social network with 460 million edges.

Abstract Image

Abstract Image

Abstract Image

MAGE:丰富属性图中的近似模式匹配。
给定一个有数百万个节点和边的大型图,例如一个节点和边都具有多种属性(如职位、联系强度)的社交网络,如何快速找到感兴趣的子图(如具有强联系的商人圈)?我们提出的 MAGE 是一种可扩展的多核子图匹配方法,它支持对大型、富属性图进行富有表现力的查询。我们的主要贡献包括(1)MAGE 支持同时具有节点和边属性的图(现有的大多数方法只能处理其中一种,而不能同时处理两种属性);(2)它支持富于表现力的查询,允许在一条边上设置多个属性、将通配符作为属性值(即匹配任何允许值)以及具有连续值的属性;以及(3)它具有可扩展性,支持具有数亿条边的图。我们通过在大型真实图和合成图(如拥有 4.6 亿条边的 Google+ 社交网络)上进行大量实验,证明了 MAGE 的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信