Rafik Mansouri, Eric Haÿ, Pierre J Marie, Dominique Modrowski
{"title":"Role of syndecan-2 in osteoblast biology and pathology.","authors":"Rafik Mansouri, Eric Haÿ, Pierre J Marie, Dominique Modrowski","doi":"10.1038/bonekey.2015.33","DOIUrl":null,"url":null,"abstract":"<p><p>Syndecans 1-4 are a family of transmembrane proteins composed of a core protein and glycosaminoglycan chains. Although the four syndecans have common functions, they appear to be connected to different signaling pathways, and their expression occurs in a cell- and development-specific pattern. In contrast to other syndecans, syndecan-2 expression increases during osteoblast differentiation. Mechanistically, syndecan-2 exerts multiple functions in cells of the osteoblast lineage as it serves as a co-receptor for fibroblast growth factors and Wnt proteins and controls cell adhesion, proliferation, differentiation and apoptosis. Recent studies indicate that syndecan-2 also contributes to osteosarcoma cell response to cytotoxic agents through interactions with Wnt/β-catenin signaling. Here we summarize our current understanding of the role of syndecan-2 in the control of osteoblast biology and pathology and discuss how syndecan-2 acts as a modulator of the bone cell microenvironment. </p>","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":" ","pages":"666"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/bonekey.2015.33","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BoneKEy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/bonekey.2015.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Syndecans 1-4 are a family of transmembrane proteins composed of a core protein and glycosaminoglycan chains. Although the four syndecans have common functions, they appear to be connected to different signaling pathways, and their expression occurs in a cell- and development-specific pattern. In contrast to other syndecans, syndecan-2 expression increases during osteoblast differentiation. Mechanistically, syndecan-2 exerts multiple functions in cells of the osteoblast lineage as it serves as a co-receptor for fibroblast growth factors and Wnt proteins and controls cell adhesion, proliferation, differentiation and apoptosis. Recent studies indicate that syndecan-2 also contributes to osteosarcoma cell response to cytotoxic agents through interactions with Wnt/β-catenin signaling. Here we summarize our current understanding of the role of syndecan-2 in the control of osteoblast biology and pathology and discuss how syndecan-2 acts as a modulator of the bone cell microenvironment.