{"title":"Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer.","authors":"Karissa Tilbury, Paul J Campagnola","doi":"10.4137/PMC.S13214","DOIUrl":null,"url":null,"abstract":"<p><p>In this perspective, we discuss how the nonlinear optical technique of second-harmonic generation (SHG) microscopy has been used to greatly enhance our understanding of the tumor microenvironment (TME) of breast and ovarian cancer. Striking changes in collagen architecture are associated with these epithelial cancers, and SHG can image these changes with great sensitivity and specificity with submicrometer resolution. This information has not historically been exploited by pathologists but has the potential to enhance diagnostic and prognostic capabilities. We summarize the utility of image processing tools that analyze fiber morphology in SHG images of breast and ovarian cancer in human tissues and animal models. We also describe methods that exploit the SHG physical underpinnings that are effective in delineating normal and malignant tissues. First we describe the use of polarization-resolved SHG that yields metrics related to macromolecular and supramolecular structures. The coherence and corresponding phase-matching process of SHG results in emission directionality (forward to backward), which is related to sub-resolution fibrillar assembly. These analyses are more general and more broadly applicable than purely morphology-based analyses; however, they are more computationally intensive. Intravital imaging techniques are also emerging that incorporate all of these quantitative analyses. Now, all these techniques can be coupled with rapidly advancing miniaturization of imaging systems to afford their use in clinical situations including enhancing pathology analysis and also in assisting in real-time surgical determination of tumor margins. </p>","PeriodicalId":88294,"journal":{"name":"Perspectives in medicinal chemistry","volume":"7 ","pages":"21-32"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/PMC.S13214","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/PMC.S13214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
In this perspective, we discuss how the nonlinear optical technique of second-harmonic generation (SHG) microscopy has been used to greatly enhance our understanding of the tumor microenvironment (TME) of breast and ovarian cancer. Striking changes in collagen architecture are associated with these epithelial cancers, and SHG can image these changes with great sensitivity and specificity with submicrometer resolution. This information has not historically been exploited by pathologists but has the potential to enhance diagnostic and prognostic capabilities. We summarize the utility of image processing tools that analyze fiber morphology in SHG images of breast and ovarian cancer in human tissues and animal models. We also describe methods that exploit the SHG physical underpinnings that are effective in delineating normal and malignant tissues. First we describe the use of polarization-resolved SHG that yields metrics related to macromolecular and supramolecular structures. The coherence and corresponding phase-matching process of SHG results in emission directionality (forward to backward), which is related to sub-resolution fibrillar assembly. These analyses are more general and more broadly applicable than purely morphology-based analyses; however, they are more computationally intensive. Intravital imaging techniques are also emerging that incorporate all of these quantitative analyses. Now, all these techniques can be coupled with rapidly advancing miniaturization of imaging systems to afford their use in clinical situations including enhancing pathology analysis and also in assisting in real-time surgical determination of tumor margins.