Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm.

Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, Bernhard Schölkopf
{"title":"Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm.","authors":"Hadi Daneshmand,&nbsp;Manuel Gomez-Rodriguez,&nbsp;Le Song,&nbsp;Bernhard Schölkopf","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called <i>cascades</i>. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade-data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an [Formula: see text]-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe <i>O</i>(<i>d</i><sup>3</sup> log <i>N</i>) cascades, where <i>d</i> is the maximum number of parents of a node and <i>N</i> is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"32 2","pages":"793-801"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412853/pdf/nihms-680553.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information spreads across social and technological networks, but often the network structures are hidden from us and we only observe the traces left by the diffusion processes, called cascades. Can we recover the hidden network structures from these observed cascades? What kind of cascades and how many cascades do we need? Are there some network structures which are more difficult than others to recover? Can we design efficient inference algorithms with provable guarantees? Despite the increasing availability of cascade-data and methods for inferring networks from these data, a thorough theoretical understanding of the above questions remains largely unexplored in the literature. In this paper, we investigate the network structure inference problem for a general family of continuous-time diffusion models using an [Formula: see text]-regularized likelihood maximization framework. We show that, as long as the cascade sampling process satisfies a natural incoherence condition, our framework can recover the correct network structure with high probability if we observe O(d3 log N) cascades, where d is the maximum number of parents of a node and N is the total number of nodes. Moreover, we develop a simple and efficient soft-thresholding inference algorithm, which we use to illustrate the consequences of our theoretical results, and show that our framework outperforms other alternatives in practice.

Abstract Image

Abstract Image

估计扩散网络结构:恢复条件,样本复杂度和软阈值算法。
信息在社会和技术网络中传播,但网络结构往往对我们是隐藏的,我们只能观察到扩散过程留下的痕迹,称为级联。我们能从这些观察到的级联中恢复隐藏的网络结构吗?我们需要什么样的级联,需要多少级联?是否存在比其他网络结构更难恢复的网络结构?我们能否设计出具有可证明保证的高效推理算法?尽管级联数据的可用性和从这些数据推断网络的方法越来越多,但对上述问题的全面理论理解在文献中仍未得到充分探讨。本文利用正则化似然最大化框架研究了一类连续时间扩散模型的网络结构推理问题。我们证明,只要级联采样过程满足自然的非相干条件,如果观察O(d3 log N)级联,我们的框架可以高概率地恢复正确的网络结构,其中d为节点的最大父节点数,N为节点总数。此外,我们开发了一个简单而有效的软阈值推理算法,我们用它来说明我们的理论结果的后果,并表明我们的框架在实践中优于其他替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信