[Major histocompatibility complex (MHC) in mammals' and its importance for studies of rare species (with Felidae family as an example)].
Pub Date : 2014-07-01
K K Tarasian, P A Sorokin, M V Kholodova, V V Rozhnov
{"title":"[Major histocompatibility complex (MHC) in mammals' and its importance for studies of rare species (with Felidae family as an example)].","authors":"K K Tarasian, P A Sorokin, M V Kholodova, V V Rozhnov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Major histocompatibility complex (MHC) appears to be a suitable tool for solving various tasks of popu- lationgenetics. Information on genetic basis of immunity facilitates understanding of evolutionary his- tory and assessment of current state and prospects of studied population/species survival. On the one hand, MHC variability is maintained through pathogen dependent mechanisms, i.e., directional selection of individuals resistant to diseases, that are present in the environment and balancing selection which gives advantage to those individuals carrying unusual or rare alleles of MHC genes. On the other hand, MHC genes have an influence on reproduction efficiency of individuals. Because of MHC polygeny, its studying requires an application of methods that introduce additional stages between amplification of a certain gene segment and its sequencing. In the article, different tech- niques of allele separation are considered, as well as a simplified version of MHC variability analysis based on the examination of microsatellite loci. Despite the high information value of MHC, it is still not used in zoological studies as often as it deserves. Using as an example predatory mammals of Felidae family which contains quite a few threatened species, we show that a majority of studies on MHC in wild cats is descriptive ones and only few of them deal with genes comparative analysis. The rise of interest to the studies of major histocompatibility complex in non-model species may help not only in solving the fundamental problems of evolution and phylogenetic structure of the family but also in planning the measures for conservation of rare and endangered species exposed to various anthropogenic stresses.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Major histocompatibility complex (MHC) appears to be a suitable tool for solving various tasks of popu- lationgenetics. Information on genetic basis of immunity facilitates understanding of evolutionary his- tory and assessment of current state and prospects of studied population/species survival. On the one hand, MHC variability is maintained through pathogen dependent mechanisms, i.e., directional selection of individuals resistant to diseases, that are present in the environment and balancing selection which gives advantage to those individuals carrying unusual or rare alleles of MHC genes. On the other hand, MHC genes have an influence on reproduction efficiency of individuals. Because of MHC polygeny, its studying requires an application of methods that introduce additional stages between amplification of a certain gene segment and its sequencing. In the article, different tech- niques of allele separation are considered, as well as a simplified version of MHC variability analysis based on the examination of microsatellite loci. Despite the high information value of MHC, it is still not used in zoological studies as often as it deserves. Using as an example predatory mammals of Felidae family which contains quite a few threatened species, we show that a majority of studies on MHC in wild cats is descriptive ones and only few of them deal with genes comparative analysis. The rise of interest to the studies of major histocompatibility complex in non-model species may help not only in solving the fundamental problems of evolution and phylogenetic structure of the family but also in planning the measures for conservation of rare and endangered species exposed to various anthropogenic stresses.