Establishment of MDCK Stable Cell Lines Expressing TMPRSS2 and MSPL and Their Applications in Propagating Influenza Vaccine Viruses in Absence of Exogenous Trypsin.
{"title":"Establishment of MDCK Stable Cell Lines Expressing TMPRSS2 and MSPL and Their Applications in Propagating Influenza Vaccine Viruses in Absence of Exogenous Trypsin.","authors":"Zhiyuan Wen, Chao Wu, Weiye Chen, Xianying Zeng, Jianzhong Shi, Jinying Ge, Hualan Chen, Zhigao Bu","doi":"10.1155/2015/402628","DOIUrl":null,"url":null,"abstract":"<p><p>We established two Madin-Darby canine kidney (MDCK) cell lines stably expressing human airway transmembrane protease: transmembrane protease, serine 2 (TMPRSS2) and mosaic serine protease large form (MSPL) which support multicycle growth of two H5 highly pathogenic avian influenza viruses (HPAIV) recombinant vaccines (Re-5 and Re-6) and an H9 avian influenza virus (AIV) recombinant vaccine (Re-9) in the absence of trypsin. Data showed that the cell lines stably expressed TMPRSS2 and MSPL after 20 serial passages. Both MDCK-TMPRSS2 and MDCK-MSPL could proteolytically cleave the HA of Re-5, Re-6, and Re-9 and supported high-titer growth of the vaccine without exogenous trypsin. Re-5, Re-6, and Re-9 efficiently infected and replicated within MDCK-TMPRSS2 and MDCK-MSPL cells and viral titer were comparable to the virus grown in MDCK cells with TPCK-trypsin. Thus, our results indicate a potential application for these cell lines in cell-based influenza vaccine production and may serve as a useful tool for HA proteolytic cleavage-related studies. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2015 ","pages":"402628"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/402628","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/402628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/3/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We established two Madin-Darby canine kidney (MDCK) cell lines stably expressing human airway transmembrane protease: transmembrane protease, serine 2 (TMPRSS2) and mosaic serine protease large form (MSPL) which support multicycle growth of two H5 highly pathogenic avian influenza viruses (HPAIV) recombinant vaccines (Re-5 and Re-6) and an H9 avian influenza virus (AIV) recombinant vaccine (Re-9) in the absence of trypsin. Data showed that the cell lines stably expressed TMPRSS2 and MSPL after 20 serial passages. Both MDCK-TMPRSS2 and MDCK-MSPL could proteolytically cleave the HA of Re-5, Re-6, and Re-9 and supported high-titer growth of the vaccine without exogenous trypsin. Re-5, Re-6, and Re-9 efficiently infected and replicated within MDCK-TMPRSS2 and MDCK-MSPL cells and viral titer were comparable to the virus grown in MDCK cells with TPCK-trypsin. Thus, our results indicate a potential application for these cell lines in cell-based influenza vaccine production and may serve as a useful tool for HA proteolytic cleavage-related studies.