Red blood cell indices and prevalence of hemoglobinopathies and glucose 6 phosphate dehydrogenase deficiencies in male Tanzanian residents of Dar es Salaam.
Solomon Mwakasungula, Tobias Schindler, Said Jongo, Elena Moreno, Kasimu Kamaka, Mgeni Mohammed, Selina Joseph, Ramla Rashid, Thabit Athuman, Anneth Mwasi Tumbo, Ali Hamad, Omar Lweno, Marcel Tanner, Seif Shekalaghe, Claudia A Daubenberger
{"title":"Red blood cell indices and prevalence of hemoglobinopathies and glucose 6 phosphate dehydrogenase deficiencies in male Tanzanian residents of Dar es Salaam.","authors":"Solomon Mwakasungula, Tobias Schindler, Said Jongo, Elena Moreno, Kasimu Kamaka, Mgeni Mohammed, Selina Joseph, Ramla Rashid, Thabit Athuman, Anneth Mwasi Tumbo, Ali Hamad, Omar Lweno, Marcel Tanner, Seif Shekalaghe, Claudia A Daubenberger","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Hemoglobinopathies, disorders of hemoglobin structure and production, are one of the most common monogenic disorders in humans. Glucose 6 phosphate dehydrogenase deficiency (G6PD) is an inherited enzymopathy resulting in increased oxygen stress susceptibility of red blood cells. The distributions of these genetic traits in populations living in tropical and subtropical regions where malaria has been or is still present are thought to result from survival advantage against severe life threatening malaria disease. 384 male Tanzanian volunteers residing in Dar es Salaam were typed for G6PD, sickle cell disease and α-thalassemia. The most prominent red blood cell polymorphism was heterozygous α(+)-thalassemia (37.8%), followed by the G6PD(A) deficiency (16.4%), heterozygous sickle cell trait (15.9%), G6PD(A-) deficiency (13.5%) and homozygous α(+)-thalassemia (5.2%). 35%, 45%, 17% and 3% of these volunteers were carriers of wild type gene loci, one, two or three of these hemoglobinopathies, respectively. We find that using a cut off value of 28.6 pg. for mean corpuscular hemoglobin (MCH), heterozygous α(+)-thalassemia can be predicted with a sensitivity of 84% and specificity of 72% in this male population. All subjects carrying homozygous α(+)-thalassemia were identified based on their MCH value < 28.6 pg. </p>","PeriodicalId":73460,"journal":{"name":"International journal of molecular epidemiology and genetics","volume":"5 4","pages":"185-94"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348704/pdf/ijmeg0005-0185.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular epidemiology and genetics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hemoglobinopathies, disorders of hemoglobin structure and production, are one of the most common monogenic disorders in humans. Glucose 6 phosphate dehydrogenase deficiency (G6PD) is an inherited enzymopathy resulting in increased oxygen stress susceptibility of red blood cells. The distributions of these genetic traits in populations living in tropical and subtropical regions where malaria has been or is still present are thought to result from survival advantage against severe life threatening malaria disease. 384 male Tanzanian volunteers residing in Dar es Salaam were typed for G6PD, sickle cell disease and α-thalassemia. The most prominent red blood cell polymorphism was heterozygous α(+)-thalassemia (37.8%), followed by the G6PD(A) deficiency (16.4%), heterozygous sickle cell trait (15.9%), G6PD(A-) deficiency (13.5%) and homozygous α(+)-thalassemia (5.2%). 35%, 45%, 17% and 3% of these volunteers were carriers of wild type gene loci, one, two or three of these hemoglobinopathies, respectively. We find that using a cut off value of 28.6 pg. for mean corpuscular hemoglobin (MCH), heterozygous α(+)-thalassemia can be predicted with a sensitivity of 84% and specificity of 72% in this male population. All subjects carrying homozygous α(+)-thalassemia were identified based on their MCH value < 28.6 pg.