Symmetrical Diamidate Prodrugs of Nucleotide Analogues for Drug Delivery

Q4 Chemistry
Fabrizio Pertusati, Christopher McGuigan, Michaela Serpi
{"title":"Symmetrical Diamidate Prodrugs of Nucleotide Analogues for Drug Delivery","authors":"Fabrizio Pertusati,&nbsp;Christopher McGuigan,&nbsp;Michaela Serpi","doi":"10.1002/0471142700.nc1506s60","DOIUrl":null,"url":null,"abstract":"<p>The use of pronucleotides to circumvent the well-known drawbacks of nucleotide analogs has played a significant role in the area of antiviral and anticancer drug delivery. Several motifs have been designed to mask the negative charges on the phosphorus moiety of either nucleoside monophosphates or nucleoside phosphonates, in order to increase their hydrophobicity and allow entry of the compound into the cell. Among them the bis-amidate analogs, having two identical amino acids as masking groups through a P–N bond, represent a more recent approach for the delivery of nucleotide analogs, endowed with antiviral or anticancer activity. Different synthetic strategies are commonly used for preparing phosphorodiamidates of nucleosides. In this protocol, we would like to focus on the description of the synthetic methodology that in our hand gave the best results using 2′-3′-didehydro-2′-3′-dideoxythymidine (d4T, Stavudine) as model nucleoside. A second strategy for preparing diamidates of nucleoside phosphonates will be reported using {[2-(6-amino-9 H-purin-9-yl)ethoxy]methyl}phosphonic acid (PMEA, adefovir) as model substrate. © 2015 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10966,"journal":{"name":"Current Protocols in Nucleic Acid Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0471142700.nc1506s60","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Nucleic Acid Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/0471142700.nc1506s60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 4

Abstract

The use of pronucleotides to circumvent the well-known drawbacks of nucleotide analogs has played a significant role in the area of antiviral and anticancer drug delivery. Several motifs have been designed to mask the negative charges on the phosphorus moiety of either nucleoside monophosphates or nucleoside phosphonates, in order to increase their hydrophobicity and allow entry of the compound into the cell. Among them the bis-amidate analogs, having two identical amino acids as masking groups through a P–N bond, represent a more recent approach for the delivery of nucleotide analogs, endowed with antiviral or anticancer activity. Different synthetic strategies are commonly used for preparing phosphorodiamidates of nucleosides. In this protocol, we would like to focus on the description of the synthetic methodology that in our hand gave the best results using 2′-3′-didehydro-2′-3′-dideoxythymidine (d4T, Stavudine) as model nucleoside. A second strategy for preparing diamidates of nucleoside phosphonates will be reported using {[2-(6-amino-9 H-purin-9-yl)ethoxy]methyl}phosphonic acid (PMEA, adefovir) as model substrate. © 2015 by John Wiley & Sons, Inc.

对称二酯前药的核苷酸类似物的药物传递
利用原核苷酸来规避核苷酸类似物的众所周知的缺点,在抗病毒和抗癌药物递送领域发挥了重要作用。一些基序被设计用来掩盖单磷酸核苷或磷酸核苷的磷部分的负电荷,以增加它们的疏水性并允许化合物进入细胞。其中,双酰胺类类似物通过P-N键具有两个相同的氨基酸作为掩蔽基团,代表了一种最新的递送核苷酸类似物的方法,具有抗病毒或抗癌活性。不同的合成策略通常用于制备核苷的磷酸二甲酸酯。在本协议中,我们将重点描述合成方法,在我们手中使用2 ' -3 ' -二去氢-2 ' -3 ' -二脱氧胸苷(d4T,司他夫定)作为模型核苷获得最佳结果。制备核苷膦酸二酯的第二种策略将报道使用{[2-(6-氨基-9 h -嘌呤-9-基)乙氧基]甲基}膦酸(PMEA,阿德福韦)作为模型底物。©2015 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Protocols in Nucleic Acid Chemistry
Current Protocols in Nucleic Acid Chemistry Chemistry-Organic Chemistry
自引率
0.00%
发文量
0
期刊介绍: Published in association with International Society for Nucleosides, Nucleotides & Nucleic Acids (IS3NA) , Current Protocols in Nucleic Acid Chemistry is equally valuable for biotech, pharmaceutical, and academic labs. It is the resource for designing and running successful research projects in the rapidly growing and changing field of nucleic acid, nucleotide, and nucleoside research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信