Modeling Viral Capsid Assembly.

Michael F Hagan
{"title":"Modeling Viral Capsid Assembly.","authors":"Michael F Hagan","doi":"10.1002/9781118755815.ch01","DOIUrl":null,"url":null,"abstract":"<p><p>I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.</p>","PeriodicalId":50874,"journal":{"name":"Advances in Chemical Physics","volume":"155 ","pages":"1-68"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318123/pdf/nihms605831.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781118755815.ch01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.

Abstract Image

Abstract Image

Abstract Image

病毒外壳组装模型
我回顾了用于模拟病毒外壳组装的理论和计算方法。我讨论了从平衡连续理论到分子动力学模拟等各种方法的能力和局限性,并概述了这些建模工作得出的有关病毒组装的一些重要结论。主题包括病毒空壳的组装、围绕单链核酸的组装以形成病毒粒子,以及围绕合成聚合物或带电纳米粒子的组装以用于纳米技术或生物医学应用。我将介绍一些建模工作促进实验突破的实例,以及加强建模与实验之间联系的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Chemical Physics
Advances in Chemical Physics PHYSICS, ATOMIC, MOLECULAR & CHEMICAL-
自引率
0.00%
发文量
0
审稿时长
1.0 months
期刊介绍: A landmark in publishing and science, Advances in Chemical Physics is an international forum for the review and critical evaluation of the science that has propelled every area of the discipline. Each volume contains discussions of aspects of the state of diverse subjects in chemical physics and related fields, with chapters written by top researchers in the field from around the world. The series now comprises more than 150 volumes covering the period from the mid 1960’s to the present. Collectively, they represent the history of modern chemical physics. Discussions of all areas of chemical physics, with extensions to biophysics and soft matter physics can be found in these volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信