The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion.

Siyoung Choi, William L Murphy
{"title":"The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion.","authors":"Siyoung Choi,&nbsp;William L Murphy","doi":"10.1039/C2JM33354F","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have demonstrated the influence of calcium phosphate (CaP) mineral coating characteristics on cell attachment, proliferation, and differentiation. However, the wide range of mineral properties that can potentially influence cell behavior calls for an efficient platform to screen for the effects of specific mineral properties. To address this need, we have developed an efficient well-plate format to probe for the effects of mineral coating properties on stem cell behavior. Specifically, here we systematically controlled mineral coating morphology by modulating ion concentrations in modified simulated body fluids (mSBF) during mineral nucleation and growth. We found that mineral micro-morphology could be gradually changed from spherulitic, to plate-like, to net-like depending on [Ca<sup>2+</sup>] and [PO<sub>4</sub><sup>3-</sup>] in mSBF solutions, while other mineral properties (Ca/P ratio, crystallinity, dissolution rate) remained constant. Differences in mineral morphology resulted in significant differences in stem cell attachment and expansion <i>in vitro</i>. These findings suggest that an enhanced throughput mineral coating format may be useful to identify mineral coating properties for optimal stem cell attachment and expansion, which may ultimately permit efficient intraoperative seeding of patient derived stem cells.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM33354F","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/C2JM33354F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Previous studies have demonstrated the influence of calcium phosphate (CaP) mineral coating characteristics on cell attachment, proliferation, and differentiation. However, the wide range of mineral properties that can potentially influence cell behavior calls for an efficient platform to screen for the effects of specific mineral properties. To address this need, we have developed an efficient well-plate format to probe for the effects of mineral coating properties on stem cell behavior. Specifically, here we systematically controlled mineral coating morphology by modulating ion concentrations in modified simulated body fluids (mSBF) during mineral nucleation and growth. We found that mineral micro-morphology could be gradually changed from spherulitic, to plate-like, to net-like depending on [Ca2+] and [PO43-] in mSBF solutions, while other mineral properties (Ca/P ratio, crystallinity, dissolution rate) remained constant. Differences in mineral morphology resulted in significant differences in stem cell attachment and expansion in vitro. These findings suggest that an enhanced throughput mineral coating format may be useful to identify mineral coating properties for optimal stem cell attachment and expansion, which may ultimately permit efficient intraoperative seeding of patient derived stem cells.

矿物包覆形态对间充质干细胞附着和扩增的影响。
先前的研究已经证明了磷酸钙(CaP)矿物包被特性对细胞附着、增殖和分化的影响。然而,可能影响细胞行为的各种矿物性质需要一个有效的平台来筛选特定矿物性质的影响。为了满足这一需求,我们开发了一种高效的孔板格式来探测矿物涂层特性对干细胞行为的影响。具体来说,在这里,我们系统地控制矿物涂层形态通过调节离子浓度在修饰模拟体液(mSBF)在矿物成核和生长。我们发现矿物的微观形态可以根据[Ca2+]和[PO43-]在mSBF溶液中逐渐从球粒状转变为板状,再转变为网状,而其他矿物性质(Ca/P比,结晶度,溶解速率)保持不变。矿物形态的差异导致干细胞在体外的附着和扩增有显著差异。这些发现表明,增强通量的矿物涂层形式可能有助于确定最佳干细胞附着和扩增的矿物涂层特性,这可能最终允许术中有效地播种患者来源的干细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry
Journal of Materials Chemistry 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
1.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信