MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.

B Uma, P S Ayyaswamy, R Radhakrishnan, D M Eckmann
{"title":"MODELING OF A NANOPARTICLE MOTION IN A NEWTONIAN FLUID: A COMPARISON BETWEEN FLUCTUATING HYDRODYNAMICS AND GENERALIZED LANGEVIN PROCEDURES.","authors":"B Uma,&nbsp;P S Ayyaswamy,&nbsp;R Radhakrishnan,&nbsp;D M Eckmann","doi":"10.1115/MNHMT2012-75019","DOIUrl":null,"url":null,"abstract":"<p><p>A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed to simulate the motion of a nanocarrier in a quiescent fluid contained in a cylindrical tube. The nanocarrier is treated as a solid sphere. Thermal fluctuations are implemented using two different approaches: (1) fluctuating hydrodynamics; (2) generalized Langevin dynamics (Mittag-Leffler noise). At thermal equilibrium, the numerical predictions for temperature of the nanoparticle, velocity distribution of the particle, decay of the velocity autocorrelation function, diffusivity of the particle and particle-wall interactions are evaluated and compared with analytical results, where available. For a neutrally buoyant nanoparticle of 200 nm radius, the comparisons between the results obtained from the fluctuating hydrodynamics and the generalized Langevin dynamics approaches are provided. Results for particle diffusivity predicted by the fluctuating hydrodynamics approach compare very well with analytical predictions. Ease of computation of the thermostat is obtained with the Langevin approach although the dynamics gets altered.</p>","PeriodicalId":90952,"journal":{"name":"Proceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference -- 2012 : presented at the ASME 2012 3rd Micro/Nanoscale Heat and Mass Transfer International Conference, March 3-6, 2012, Atlanta, Georgia. Micro/N...","volume":"2012 ","pages":"735-743"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/MNHMT2012-75019","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference -- 2012 : presented at the ASME 2012 3rd Micro/Nanoscale Heat and Mass Transfer International Conference, March 3-6, 2012, Atlanta, Georgia. Micro/N...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/MNHMT2012-75019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed to simulate the motion of a nanocarrier in a quiescent fluid contained in a cylindrical tube. The nanocarrier is treated as a solid sphere. Thermal fluctuations are implemented using two different approaches: (1) fluctuating hydrodynamics; (2) generalized Langevin dynamics (Mittag-Leffler noise). At thermal equilibrium, the numerical predictions for temperature of the nanoparticle, velocity distribution of the particle, decay of the velocity autocorrelation function, diffusivity of the particle and particle-wall interactions are evaluated and compared with analytical results, where available. For a neutrally buoyant nanoparticle of 200 nm radius, the comparisons between the results obtained from the fluctuating hydrodynamics and the generalized Langevin dynamics approaches are provided. Results for particle diffusivity predicted by the fluctuating hydrodynamics approach compare very well with analytical predictions. Ease of computation of the thermostat is obtained with the Langevin approach although the dynamics gets altered.

牛顿流体中纳米粒子运动的建模:波动流体力学与广义朗格万程序的比较。
采用基于任意拉格朗日-欧拉有限元法的直接数值模拟方法,模拟了纳米载体在圆柱形管内静态流体中的运动。纳米载体被视为一个实心球体。热波动采用两种不同的方法实现:(1)波动流体力学;(2)广义朗格万动力学(Mittag-Leffler噪声)。在热平衡状态下,对纳米粒子的温度、粒子的速度分布、速度自相关函数的衰减、粒子的扩散率和粒子-壁面相互作用的数值预测进行了评估,并与可用的分析结果进行了比较。对于半径为200nm的中性浮力纳米粒子,给出了波动流体力学方法与广义朗之万动力学方法所得结果的比较。波动流体力学方法对粒子扩散率的预测结果与解析预测结果有很好的比较。采用朗之万方法计算温控器的精度较低,但动力学特性有所改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信