Erik Verschueren, John Von Dollen, Peter Cimermancic, Natali Gulbahce, Andrej Sali, Nevan J. Krogan
下载PDF
{"title":"Scoring Large-Scale Affinity Purification Mass Spectrometry Datasets with MiST","authors":"Erik Verschueren, John Von Dollen, Peter Cimermancic, Natali Gulbahce, Andrej Sali, Nevan J. Krogan","doi":"10.1002/0471250953.bi0819s49","DOIUrl":null,"url":null,"abstract":"<p>High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions, but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls, and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity). We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network. © 2015 by John Wiley & Sons, Inc.</p>","PeriodicalId":10958,"journal":{"name":"Current protocols in bioinformatics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0471250953.bi0819s49","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/0471250953.bi0819s49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 57
引用
批量引用
Abstract
High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions, but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls, and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity). We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network. © 2015 by John Wiley & Sons, Inc.
用MiST评分大规模亲和纯化质谱数据集
高通量亲和纯化质谱(AP-MS)实验可以鉴定大量蛋白质相互作用,但这些相互作用中只有一小部分具有生物学相关性。在这里,我们描述了一种综合的计算策略来处理原始AP-MS数据,执行质量控制,并在一组使用质谱相互作用统计(MiST)的重复AP-MS实验中优先考虑生物学相关的诱饵-猎物对。MiST分数是猎物数量(丰度)、重复实验中丰度不变性(再现性)和猎物相对于其他诱饵的独特性(特异性)的线性组合。我们描述了如何在R环境中运行完整的MiST分析管道,并讨论了一些可配置的选项,这些选项允许外行用户将任何大规模AP-MS数据转换为可解释的、生物相关的蛋白质-蛋白质相互作用网络。©2015 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。