Yue Yang, Bohkyung Kim, Young-Ki Park, Ji-Young Lee
{"title":"Effects of Long-Term Supplementation of Blue-Green Algae on Lipid Metabolism in C57BL/6J mice.","authors":"Yue Yang, Bohkyung Kim, Young-Ki Park, Ji-Young Lee","doi":"10.15226/jnhfs.2014.00108","DOIUrl":null,"url":null,"abstract":"<p><p>Dyslipidemia is a primary risk factor for cardiovascular disease. In this study, we investigated the effect of long-term supplementation of two blue-green algae (BGA) species, i.e., <i>Nostoc commune var</i>. <i>sphaeroides Kützing</i> (NO) and <i>Spirulina platensis</i> (SP), on lipid metabolism in vivo. Male C57BL/6J mice were fed an AIN-93G/M diet supplemented with 2.5 or 5% (wt/wt) NO or SP for 6 months. Mice fed NO and SP showed lower plasma total cholesterol (TC) and triglyceride (TG) concentrations than control at certain months during 6 month experimental period. Both BGA supplementation for 6 months significantly increased hepatic TC contents whereas SP-fed groups had significantly less TG levels in the liver compared with control and NO groups. None of BGA-fed animals showed significantly different mRNA levels of sterol regulatory element binding protein 2, while 3-hydroxy-3-methylglutaryl coenzyme A reductase and low-density lipoprotein receptor (LDLR) expression was higher in NO groups than the other groups in the liver. Furthermore, NO supplementation increased the hepatic expression of acetyl-CoA carboxylase 1, stearoyl CoA desaturase 1, carnitine palmitoyltransferase 1α, and acyl-CoA oxidase 1 but SP did not elicit any significant changes in mRNA levels of the genes compared with control. LDLR protein level was significantly higher in NO 2.5% and SP 5%, as compared to the control and NO 5% groups; while the level of fatty acid synthase protein in the liver was significantly higher in NO 5% and SP 5%, than that in the control group. In conclusion, our results suggest that long-term supplementation of NO and SP decreased plasma TC and TG concentrations. Therefore, supplementation of NO and SP may be potentially beneficial for preventing dyslipidemia-associated chronic diseases.</p>","PeriodicalId":90609,"journal":{"name":"Journal of nutritional health & food science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299668/pdf/nihms-649403.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nutritional health & food science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15226/jnhfs.2014.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Dyslipidemia is a primary risk factor for cardiovascular disease. In this study, we investigated the effect of long-term supplementation of two blue-green algae (BGA) species, i.e., Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), on lipid metabolism in vivo. Male C57BL/6J mice were fed an AIN-93G/M diet supplemented with 2.5 or 5% (wt/wt) NO or SP for 6 months. Mice fed NO and SP showed lower plasma total cholesterol (TC) and triglyceride (TG) concentrations than control at certain months during 6 month experimental period. Both BGA supplementation for 6 months significantly increased hepatic TC contents whereas SP-fed groups had significantly less TG levels in the liver compared with control and NO groups. None of BGA-fed animals showed significantly different mRNA levels of sterol regulatory element binding protein 2, while 3-hydroxy-3-methylglutaryl coenzyme A reductase and low-density lipoprotein receptor (LDLR) expression was higher in NO groups than the other groups in the liver. Furthermore, NO supplementation increased the hepatic expression of acetyl-CoA carboxylase 1, stearoyl CoA desaturase 1, carnitine palmitoyltransferase 1α, and acyl-CoA oxidase 1 but SP did not elicit any significant changes in mRNA levels of the genes compared with control. LDLR protein level was significantly higher in NO 2.5% and SP 5%, as compared to the control and NO 5% groups; while the level of fatty acid synthase protein in the liver was significantly higher in NO 5% and SP 5%, than that in the control group. In conclusion, our results suggest that long-term supplementation of NO and SP decreased plasma TC and TG concentrations. Therefore, supplementation of NO and SP may be potentially beneficial for preventing dyslipidemia-associated chronic diseases.