Development of Analytical Approach for an Automated Analysis of Continuous Long-Term Single Lead ECG for Diagnosis of Paroxysmal Atrioventricular Block.
{"title":"Development of Analytical Approach for an Automated Analysis of Continuous Long-Term Single Lead ECG for Diagnosis of Paroxysmal Atrioventricular Block.","authors":"Muammar M Kabir, Larisa G Tereshchenko","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Reliable detection of significant ECG features such as the P-wave, QRS-complex and T-wave are of major clinical importance. In this paper we introduce a new algorithm based on synchrosqueezing wavelet transform for detection of P-waves in long-term ECG recordings. Synchrosqueezing is a powerful time-frequency analysis tool that provides precise frequency representation of a multicomponent signal through mode decomposition. First, we analyzed four wavelet filters with different filter parameters, to identify the best specification for quantification of QRS and P-wave. Second, the algorithm was tested on ECG recording comprising of events with paroxysmal atrioventricular block and validated through visual scanning. Using morlet wavelet with a peak frequency of 5Hz and separation of 0.1Hz, our proposed algorithm was able to detect 95.5% of P-waves. From this study, it appears that synchrosqueezing wavelet transform may provide a powerful robust technique for automated ECG analysis.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"41 ","pages":"913-916"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275101/pdf/nihms-645032.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable detection of significant ECG features such as the P-wave, QRS-complex and T-wave are of major clinical importance. In this paper we introduce a new algorithm based on synchrosqueezing wavelet transform for detection of P-waves in long-term ECG recordings. Synchrosqueezing is a powerful time-frequency analysis tool that provides precise frequency representation of a multicomponent signal through mode decomposition. First, we analyzed four wavelet filters with different filter parameters, to identify the best specification for quantification of QRS and P-wave. Second, the algorithm was tested on ECG recording comprising of events with paroxysmal atrioventricular block and validated through visual scanning. Using morlet wavelet with a peak frequency of 5Hz and separation of 0.1Hz, our proposed algorithm was able to detect 95.5% of P-waves. From this study, it appears that synchrosqueezing wavelet transform may provide a powerful robust technique for automated ECG analysis.