Nam S Lee, Guorong Sun, Lily Yun Lin, William L Neumann, John N Freskos, Amolkumar Karwa, Jeng J Shieh, Richard B Dorshow, Karen L Wooley
{"title":"Tunable dual-emitting shell-crosslinked nano-objects as single-component ratiometric pH-sensing materials.","authors":"Nam S Lee, Guorong Sun, Lily Yun Lin, William L Neumann, John N Freskos, Amolkumar Karwa, Jeng J Shieh, Richard B Dorshow, Karen L Wooley","doi":"10.1039/C1JM11854D","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-emitting photonic nano-objects that can sense changes in the environmental pH are designed based on shell-crosslinked micelles assembled from amphiphilic block copolymers and crosslinked with pH-insensitive chromophores. The chromophoric crosslinkers are tetra-functionalized pyrazine molecules that bear a set of terminal aliphatic amine groups and a set of anilino amine groups, which demonstrate morphology-dependent reactivities towards the poly(acrylic acid) shell domain of the nano-objects. The extent to which the anilino amine groups react with the nano-object shell is shown to affect the hypsochromic shift (blue-shift). The ratio of fluorescence intensity at 496 nm over that of 560 nm is dependent upon the solution pH. We report, herein, observations on the pH-sensitive dual-emission photophysical properties of rod-shaped or spherical nano-objects, whose shell domains offer two distinct platforms for amidation reactions to occur-through formation of activated esters upon addition of carbodiimide or pre-installation of activated ester groups. We demonstrate that physical manipulations (changes in morphology or particle dimensions) or chemical manipulations of the crosslinking reaction (the order of installation of activated esters) lead to fine tuning of dual-emission over <i>ca</i>. 60 nm in a physiologically relevant pH range. Rod-shaped shell-crosslinked nanostructures with poly(<i>p</i>-hydroxystyrene) core show blue-shift as a function of increasing pH while spherical shell-crosslinked nanostructures with polystyrene core and poly(ethylene oxide) corona exhibit blue-shift as a function of decreasing pH.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262927/pdf/nihms646089.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/C1JM11854D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-emitting photonic nano-objects that can sense changes in the environmental pH are designed based on shell-crosslinked micelles assembled from amphiphilic block copolymers and crosslinked with pH-insensitive chromophores. The chromophoric crosslinkers are tetra-functionalized pyrazine molecules that bear a set of terminal aliphatic amine groups and a set of anilino amine groups, which demonstrate morphology-dependent reactivities towards the poly(acrylic acid) shell domain of the nano-objects. The extent to which the anilino amine groups react with the nano-object shell is shown to affect the hypsochromic shift (blue-shift). The ratio of fluorescence intensity at 496 nm over that of 560 nm is dependent upon the solution pH. We report, herein, observations on the pH-sensitive dual-emission photophysical properties of rod-shaped or spherical nano-objects, whose shell domains offer two distinct platforms for amidation reactions to occur-through formation of activated esters upon addition of carbodiimide or pre-installation of activated ester groups. We demonstrate that physical manipulations (changes in morphology or particle dimensions) or chemical manipulations of the crosslinking reaction (the order of installation of activated esters) lead to fine tuning of dual-emission over ca. 60 nm in a physiologically relevant pH range. Rod-shaped shell-crosslinked nanostructures with poly(p-hydroxystyrene) core show blue-shift as a function of increasing pH while spherical shell-crosslinked nanostructures with polystyrene core and poly(ethylene oxide) corona exhibit blue-shift as a function of decreasing pH.