Ramon Ferrer-i-Cancho, Antoni Hernández-Fernández, Jaume Baixeries, Łukasz Dębowski, Ján Mačutek
{"title":"When is Menzerath-Altmann law mathematically trivial? A new approach.","authors":"Ramon Ferrer-i-Cancho, Antoni Hernández-Fernández, Jaume Baixeries, Łukasz Dębowski, Ján Mačutek","doi":"10.1515/sagmb-2013-0034","DOIUrl":null,"url":null,"abstract":"<p><p>Menzerath's law, the tendency of Z (the mean size of the parts) to decrease as X (the number of parts) increases, is found in language, music and genomes. Recently, it has been argued that the presence of the law in genomes is an inevitable consequence of the fact that Z=Y/X, which would imply that Z scales with X as Z ∼ 1/X. That scaling is a very particular case of Menzerath-Altmann law that has been rejected by means of a correlation test between X and Y in genomes, being X the number of chromosomes of a species, Y its genome size in bases and Z the mean chromosome size. Here we review the statistical foundations of that test and consider three non-parametric tests based upon different correlation metrics and one parametric test to evaluate if Z ∼ 1/X in genomes. The most powerful test is a new non-parametric one based upon the correlation ratio, which is able to reject Z ∼ 1/X in nine out of 11 taxonomic groups and detect a borderline group. Rather than a fact, Z ∼ 1/X is a baseline that real genomes do not meet. The view of Menzerath-Altmann law as inevitable is seriously flawed.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"13 6","pages":"633-44"},"PeriodicalIF":0.8000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2013-0034","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2013-0034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 22
Abstract
Menzerath's law, the tendency of Z (the mean size of the parts) to decrease as X (the number of parts) increases, is found in language, music and genomes. Recently, it has been argued that the presence of the law in genomes is an inevitable consequence of the fact that Z=Y/X, which would imply that Z scales with X as Z ∼ 1/X. That scaling is a very particular case of Menzerath-Altmann law that has been rejected by means of a correlation test between X and Y in genomes, being X the number of chromosomes of a species, Y its genome size in bases and Z the mean chromosome size. Here we review the statistical foundations of that test and consider three non-parametric tests based upon different correlation metrics and one parametric test to evaluate if Z ∼ 1/X in genomes. The most powerful test is a new non-parametric one based upon the correlation ratio, which is able to reject Z ∼ 1/X in nine out of 11 taxonomic groups and detect a borderline group. Rather than a fact, Z ∼ 1/X is a baseline that real genomes do not meet. The view of Menzerath-Altmann law as inevitable is seriously flawed.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.