Watershed Merge Tree Classification for Electron Microscopy Image Segmentation.

Ting Liu, Elizabeth Jurrus, Mojtaba Seyedhosseini, Mark Ellisman, Tolga Tasdizen
{"title":"Watershed Merge Tree Classification for Electron Microscopy Image Segmentation.","authors":"Ting Liu,&nbsp;Elizabeth Jurrus,&nbsp;Mojtaba Seyedhosseini,&nbsp;Mark Ellisman,&nbsp;Tolga Tasdizen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which merge decisions are made with consistency constraints to acquire the final segmentation. Independent of classifiers and decision strategies, our approach proposes a general framework for efficient hierarchical segmentation with statistical learning. We demonstrate that our method leads to a substantial improvement in segmentation accuracy.</p>","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"2012 ","pages":"133-137"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256108/pdf/nihms606909.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which merge decisions are made with consistency constraints to acquire the final segmentation. Independent of classifiers and decision strategies, our approach proposes a general framework for efficient hierarchical segmentation with statistical learning. We demonstrate that our method leads to a substantial improvement in segmentation accuracy.

分水岭合并树分类用于电子显微镜图像分割。
电子显微镜(EM)图像的自动分割是一个具有挑战性的问题。本文提出了一种利用层次结构和边界分类进行二维神经元分割的新方法。利用膜检测概率图,构建分水岭合并树,对分水岭算法的分层区域合并进行表示。利用非局部图像特征学习边界分类器,预测树中每个可能的合并,并在合并决策的基础上进行一致性约束,获得最终的分割结果。独立于分类器和决策策略,我们的方法提出了一个通用的框架,用于有效的分层分割与统计学习。我们证明了我们的方法在分割精度方面有很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信