Astrocytic tracer dynamics estimated from [1-11C]-acetate PET measurements

Andrea Arnold;Daniela Calvetti;Albert Gjedde;Peter Iversen;Erkki Somersalo
{"title":"Astrocytic tracer dynamics estimated from [1-11C]-acetate PET measurements","authors":"Andrea Arnold;Daniela Calvetti;Albert Gjedde;Peter Iversen;Erkki Somersalo","doi":"10.1093/imammb/dqu021","DOIUrl":null,"url":null,"abstract":"We address the problem of estimating the unknown parameters of a model of tracer kinetics from sequences of positron emission tomography (PET) scan data using a statistical sequential algorithm for the inference of magnitudes of dynamic parameters. The method, based on Bayesian statistical inference, is a modification of a recently proposed particle filtering and sequential Monte Carlo algorithm, where instead of preassigning the accuracy in the propagation of each particle, we fix the time step and account for the numerical errors in the innovation term. We apply the algorithm to PET images of [1-\n<tex>$^{11}$</tex>\nC]-acetate-derived tracer accumulation, estimating the transport rates in a three-compartment model of astrocytic uptake and metabolism of the tracer for a cohort of 18 volunteers from 3 groups, corresponding to healthy control individuals, cirrhotic liver and hepatic encephalopathy patients. The distribution of the parameters for the individuals and for the groups presented within the Bayesian framework support the hypothesis that the parameters for the hepatic encephalopathy group follow a significantly different distribution than the other two groups. The biological implications of the findings are also discussed.","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":"32 4","pages":"367-382"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqu021","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8225156/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We address the problem of estimating the unknown parameters of a model of tracer kinetics from sequences of positron emission tomography (PET) scan data using a statistical sequential algorithm for the inference of magnitudes of dynamic parameters. The method, based on Bayesian statistical inference, is a modification of a recently proposed particle filtering and sequential Monte Carlo algorithm, where instead of preassigning the accuracy in the propagation of each particle, we fix the time step and account for the numerical errors in the innovation term. We apply the algorithm to PET images of [1- $^{11}$ C]-acetate-derived tracer accumulation, estimating the transport rates in a three-compartment model of astrocytic uptake and metabolism of the tracer for a cohort of 18 volunteers from 3 groups, corresponding to healthy control individuals, cirrhotic liver and hepatic encephalopathy patients. The distribution of the parameters for the individuals and for the groups presented within the Bayesian framework support the hypothesis that the parameters for the hepatic encephalopathy group follow a significantly different distribution than the other two groups. The biological implications of the findings are also discussed.
星形胶质细胞示踪剂动力学估计从[1-11C]-醋酸PET测量
我们使用统计序列算法来推断动力学参数的大小,来解决从正电子发射断层扫描(PET)扫描数据序列估计示踪剂动力学模型的未知参数的问题。该方法基于贝叶斯统计推断,是对最近提出的粒子滤波和序列蒙特卡罗算法的修改,在该算法中,我们没有预先指定每个粒子传播的精度,而是固定了时间步长,并考虑了创新项中的数值误差。我们将该算法应用于[1-$^{11}$C]-乙酸盐衍生的示踪剂积累的PET图像,估计了来自3组的18名志愿者的星形细胞摄取和示踪剂代谢的三室模型中的转运率,这些志愿者对应于健康对照个体、肝硬化和肝性脑病患者。贝叶斯框架内呈现的个体和组的参数分布支持肝性脑病组的参数遵循与其他两组显著不同的分布的假设。还讨论了这些发现的生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信