{"title":"Incorporating auxiliary information for improved prediction using combination of kernel machines","authors":"Xiang Zhan , Debashis Ghosh","doi":"10.1016/j.stamet.2014.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>With evolving genomic technologies, it is possible to get different measures of the same underlying biological phenomenon using different technologies. The goal of this paper is to build a prediction model for an outcome variable <span><math><mi>Y</mi></math></span><span> from covariates </span><span><math><mi>X</mi></math></span>. Besides <span><math><mi>X</mi></math></span>, we have surrogate covariates <span><math><mi>W</mi></math></span> which are related to <span><math><mi>X</mi></math></span>. We want to utilize the information in <span><math><mi>W</mi></math></span> to boost the prediction for <span><math><mi>Y</mi></math></span> using <span><math><mi>X</mi></math></span>. In this paper, we propose a kernel machine-based method to improve prediction of <span><math><mi>Y</mi></math></span> by <span><math><mi>X</mi></math></span> by incorporating auxiliary information <span><math><mi>W</mi></math></span>. By combining single kernel machines, we also propose a hybrid kernel machine predictor, which can yield a smaller prediction error than its constituents. The prediction error of our kernel machine predictors is evaluated using simulations. We also apply our method to a lung cancer dataset and an Alzheimer’s disease dataset.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"22 ","pages":"Pages 47-57"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2014.08.001","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312714000586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
Abstract
With evolving genomic technologies, it is possible to get different measures of the same underlying biological phenomenon using different technologies. The goal of this paper is to build a prediction model for an outcome variable from covariates . Besides , we have surrogate covariates which are related to . We want to utilize the information in to boost the prediction for using . In this paper, we propose a kernel machine-based method to improve prediction of by by incorporating auxiliary information . By combining single kernel machines, we also propose a hybrid kernel machine predictor, which can yield a smaller prediction error than its constituents. The prediction error of our kernel machine predictors is evaluated using simulations. We also apply our method to a lung cancer dataset and an Alzheimer’s disease dataset.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.