Particle Filter Based Active Localization of Target and Needle in Robotic Image-Guided Intervention Systems.

Mark Renfrew, Zhuofu Bai, M Cenk Cavuşoğlu
{"title":"Particle Filter Based Active Localization of Target and Needle in Robotic Image-Guided Intervention Systems.","authors":"Mark Renfrew,&nbsp;Zhuofu Bai,&nbsp;M Cenk Cavuşoğlu","doi":"10.1109/CoASE.2013.6653938","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a probabilistic method for active localization of needle and targets in robotic image guided interventions. Specifically, an active localization scenario where the system directly controls the imaging system to actively localize the needle and target locations using intra-operative medical imaging (e.g., computerized tomography and ultrasound imaging) is explored. In the proposed method, the active localization problem is posed as an information maximization problem, where the beliefs for the needle and target states are represented and estimated using particle filters. The proposed method is also validated using a simulation study.</p>","PeriodicalId":90520,"journal":{"name":"IEEE International Conference on Automation Science and Engineering (CASE) : [proceedings]. IEEE Conference on Automation Science and Engineering","volume":"2013 ","pages":"448-454"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CoASE.2013.6653938","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Automation Science and Engineering (CASE) : [proceedings]. IEEE Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoASE.2013.6653938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a probabilistic method for active localization of needle and targets in robotic image guided interventions. Specifically, an active localization scenario where the system directly controls the imaging system to actively localize the needle and target locations using intra-operative medical imaging (e.g., computerized tomography and ultrasound imaging) is explored. In the proposed method, the active localization problem is posed as an information maximization problem, where the beliefs for the needle and target states are represented and estimated using particle filters. The proposed method is also validated using a simulation study.

基于粒子滤波的机器人图像引导干预系统中目标和指针的主动定位。
提出了一种机器人图像引导干预中针和目标主动定位的概率方法。具体而言,探索了一种主动定位场景,即系统直接控制成像系统,利用术中医学成像(如计算机断层扫描和超声成像)主动定位针头和目标位置。在该方法中,将主动定位问题转化为信息最大化问题,利用粒子滤波器表示和估计针和目标状态的信念。通过仿真研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信