Accounting for Random Regressors: A Unified Approach to Multi-modality Imaging.

Xue Yang, Carolyn B Lauzon, Ciprian Crainiceanu, Brian Caffo, Susan M Resnick, Bennett A Landman
{"title":"Accounting for Random Regressors: A Unified Approach to Multi-modality Imaging.","authors":"Xue Yang,&nbsp;Carolyn B Lauzon,&nbsp;Ciprian Crainiceanu,&nbsp;Brian Caffo,&nbsp;Susan M Resnick,&nbsp;Bennett A Landman","doi":"10.1007/978-3-642-24446-9_1","DOIUrl":null,"url":null,"abstract":"<p><p>Massively univariate regression and inference in the form of statistical parametric mapping have transformed the way in which multi-dimensional imaging data are studied. In functional and structural neuroimaging, the <i>de facto</i> standard \"design matrix\"-based general linear regression model and its multi-level cousins have enabled investigation of the biological basis of the human brain. With modern study designs, it is possible to acquire multiple three-dimensional assessments of the same individuals - e.g., structural, functional and quantitative magnetic resonance imaging alongside functional and ligand binding maps with positron emission tomography. Current statistical methods assume that the regressors are non-random. For more realistic multi-parametric assessment (e.g., voxel-wise modeling), distributional consideration of all observations is appropriate (e.g., Model II regression). Herein, we describe a unified regression and inference approach using the design matrix paradigm which accounts for both random and non-random imaging regressors.</p>","PeriodicalId":90657,"journal":{"name":"Multimodal brain image analysis : first international workshop, MBIA 2011, held in conjunction with MICCAI 2011, Toronto, Canada, September 18, 2011 : proceedings","volume":"7012 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-24446-9_1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal brain image analysis : first international workshop, MBIA 2011, held in conjunction with MICCAI 2011, Toronto, Canada, September 18, 2011 : proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-24446-9_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Massively univariate regression and inference in the form of statistical parametric mapping have transformed the way in which multi-dimensional imaging data are studied. In functional and structural neuroimaging, the de facto standard "design matrix"-based general linear regression model and its multi-level cousins have enabled investigation of the biological basis of the human brain. With modern study designs, it is possible to acquire multiple three-dimensional assessments of the same individuals - e.g., structural, functional and quantitative magnetic resonance imaging alongside functional and ligand binding maps with positron emission tomography. Current statistical methods assume that the regressors are non-random. For more realistic multi-parametric assessment (e.g., voxel-wise modeling), distributional consideration of all observations is appropriate (e.g., Model II regression). Herein, we describe a unified regression and inference approach using the design matrix paradigm which accounts for both random and non-random imaging regressors.

考虑随机回归量:多模态成像的统一方法。
大规模的单变量回归和统计参数映射形式的推理已经改变了多维成像数据的研究方式。在功能和结构神经成像中,事实上标准的基于“设计矩阵”的一般线性回归模型及其多层次表兄弟已经能够研究人类大脑的生物学基础。通过现代研究设计,可以获得同一个体的多个三维评估-例如,结构,功能和定量磁共振成像以及正电子发射断层扫描的功能和配体结合图。目前的统计方法假设回归量是非随机的。对于更现实的多参数评估(例如,体素建模),所有观测值的分布考虑是合适的(例如,模型II回归)。在这里,我们描述了一个统一的回归和推理方法,使用设计矩阵范式,考虑随机和非随机成像回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信