Mechanical evaluation of five flowable resin composites by the dynamic micro-indentation method.

Journal of dental biomechanics Pub Date : 2014-05-02 eCollection Date: 2014-01-01 DOI:10.1177/1758736014533983
Satoshi Hirayama, Hirotoshi Iwai, Yasuhiro Tanimoto
{"title":"Mechanical evaluation of five flowable resin composites by the dynamic micro-indentation method.","authors":"Satoshi Hirayama,&nbsp;Hirotoshi Iwai,&nbsp;Yasuhiro Tanimoto","doi":"10.1177/1758736014533983","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement of the strength of brittle materials, such as resin composites, is extremely difficult. Micro-indentation hardness testing is a convenient way of investigating the mechanical properties of a small volume of material. In this study, the mechanical properties of five commercially available flowable resin composites were investigated by the dynamic micro-indentation method. Additionally, the effects of inorganic-filler content on the dynamic hardness and elastic modulus of flowable composites obtained by this method were investigated. The weight percentages of the inorganic fillers in the resin composites were determined by the ashing technique. The results indicate that the mechanical properties of flowable composites are affected by not only the filler content but also the properties of the resin matrix. In conclusion, the dynamic micro-indentation method is a useful technique for determining the mechanical behavior of dental resin composites as brittle material. </p>","PeriodicalId":88916,"journal":{"name":"Journal of dental biomechanics","volume":"5 ","pages":"1758736014533983"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1758736014533983","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1758736014533983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Measurement of the strength of brittle materials, such as resin composites, is extremely difficult. Micro-indentation hardness testing is a convenient way of investigating the mechanical properties of a small volume of material. In this study, the mechanical properties of five commercially available flowable resin composites were investigated by the dynamic micro-indentation method. Additionally, the effects of inorganic-filler content on the dynamic hardness and elastic modulus of flowable composites obtained by this method were investigated. The weight percentages of the inorganic fillers in the resin composites were determined by the ashing technique. The results indicate that the mechanical properties of flowable composites are affected by not only the filler content but also the properties of the resin matrix. In conclusion, the dynamic micro-indentation method is a useful technique for determining the mechanical behavior of dental resin composites as brittle material.

Abstract Image

Abstract Image

Abstract Image

动态微压痕法评价五种可流动树脂复合材料的力学性能。
测量脆性材料(如树脂复合材料)的强度是极其困难的。微压痕硬度测试是研究小体积材料力学性能的一种方便方法。采用动态微压痕法研究了5种市售可流动树脂复合材料的力学性能。研究了无机填料含量对流动复合材料动态硬度和弹性模量的影响。采用灰化法测定了无机填料在树脂复合材料中的重量百分比。结果表明:流动复合材料的力学性能不仅受填料含量的影响,还受树脂基体性能的影响。综上所述,动态微压痕法是测定牙用树脂复合材料脆性力学行为的一种有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信