{"title":"Limits of computational biology.","authors":"Dennis Bray","doi":"10.3233/ISB-140461","DOIUrl":null,"url":null,"abstract":"<p><p>Are we close to a complete inventory of living processes so that we might expect in the near future to reproduce every essential aspect necessary for life? Or are there mechanisms and processes in cells and organisms that are presently inaccessible to us? Here I argue that a close examination of a particularly well-understood system--that of Escherichia coli chemotaxis--shows we are still a long way from a complete description. There is a level of molecular uncertainty, particularly that responsible for fine-tuning and adaptation to myriad external conditions, which we presently cannot resolve or reproduce on a computer. Moreover, the same uncertainty exists for any process in any organism and is especially pronounced and important in higher animals such as humans. Embryonic development, tissue homeostasis, immune recognition, memory formation, and survival in the real world, all depend on vast numbers of subtle variations in cell chemistry most of which are presently unknown or only poorly characterized. Overcoming these limitations will require us to not only accumulate large quantities of highly detailed data but also develop new computational methods able to recapitulate the massively parallel processing of living cells.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-140461","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-140461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8
Abstract
Are we close to a complete inventory of living processes so that we might expect in the near future to reproduce every essential aspect necessary for life? Or are there mechanisms and processes in cells and organisms that are presently inaccessible to us? Here I argue that a close examination of a particularly well-understood system--that of Escherichia coli chemotaxis--shows we are still a long way from a complete description. There is a level of molecular uncertainty, particularly that responsible for fine-tuning and adaptation to myriad external conditions, which we presently cannot resolve or reproduce on a computer. Moreover, the same uncertainty exists for any process in any organism and is especially pronounced and important in higher animals such as humans. Embryonic development, tissue homeostasis, immune recognition, memory formation, and survival in the real world, all depend on vast numbers of subtle variations in cell chemistry most of which are presently unknown or only poorly characterized. Overcoming these limitations will require us to not only accumulate large quantities of highly detailed data but also develop new computational methods able to recapitulate the massively parallel processing of living cells.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.