Decision Making in Kidney Paired Donation Programs with Altruistic Donors.
Pub Date : 2014-01-01
Yijiang Li, Peter X-K Song, Alan B Leichtman, Michael A Rees, John D Kalbfleisch
{"title":"Decision Making in Kidney Paired Donation Programs with Altruistic Donors.","authors":"Yijiang Li, Peter X-K Song, Alan B Leichtman, Michael A Rees, John D Kalbfleisch","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, kidney paired donation (KPD) has been extended to include living non-directed or altruistic donors, in which an altruistic donor donates to the candidate of an incompatible donor-candidate pair with the understanding that the donor in that pair will further donate to the candidate of a second pair, and so on; such a process continues and thus forms an altruistic donor-initiated chain. In this paper, we propose a novel strategy to sequentially allocate the altruistic donor (or bridge donor) so as to maximize the expected utility; analogous to the way a computer plays chess, the idea is to evaluate different allocations for each altruistic donor (or bridge donor) by looking several moves ahead in a derived look-ahead search tree. Simulation studies are provided to illustrate and evaluate our proposed method.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193813/pdf/nihms-566720.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, kidney paired donation (KPD) has been extended to include living non-directed or altruistic donors, in which an altruistic donor donates to the candidate of an incompatible donor-candidate pair with the understanding that the donor in that pair will further donate to the candidate of a second pair, and so on; such a process continues and thus forms an altruistic donor-initiated chain. In this paper, we propose a novel strategy to sequentially allocate the altruistic donor (or bridge donor) so as to maximize the expected utility; analogous to the way a computer plays chess, the idea is to evaluate different allocations for each altruistic donor (or bridge donor) by looking several moves ahead in a derived look-ahead search tree. Simulation studies are provided to illustrate and evaluate our proposed method.