Molecular cloning and expression pattern of duck Six1 and its preliminary functional analysis in myoblasts transfected with eukaryotic expression vector.
{"title":"Molecular cloning and expression pattern of duck Six1 and its preliminary functional analysis in myoblasts transfected with eukaryotic expression vector.","authors":"Haohan Wang, Haibo Jint, Hehe Liu, Lingli Sun, Xinxin Li, Chao Yang, Rongping Zhang, Liang Li, Jiwen Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle development is regulated by Six1, an important myogenic transcription factor. However, the functional analysis of duck Six1 has not been reported. Here, we cloned the coding domain sequence (CDS) region of the duck Six1 gene using RT-PCR and RACE methods. Bioinformatics analysis revealed that duck Six1 CDS region comprised of 849 bp and encoded 282 amino acids and had a high degree of homology with other species, suggesting that the functions of duck Six1 gene are conserved among other animals. Real-time PCR used to determine the mRNA expression profiles of duck Six1 in different tissues and different developmental stages showed that Six1 was highly expressed in skeletal muscle and the embryonic stage. Furthermore, the eukaryotic expression vector pEGFP-duSix1 was constructed and transfected into the duck myoblasts; the MTT assay revealed an obvious increase of cell proliferation after transfection. The expression profiles of Six1, Myf5 and MyoD showed that their expression levels were significantly increased. These results together suggested that pEGFP-duSix1 vector was constructed successfully and overexpression of duck Six1 in the myoblasts could promote cell proliferation activity and significant up-regulate expression of Myf5 and MyoD.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 4","pages":"271-81"},"PeriodicalIF":1.5000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skeletal muscle development is regulated by Six1, an important myogenic transcription factor. However, the functional analysis of duck Six1 has not been reported. Here, we cloned the coding domain sequence (CDS) region of the duck Six1 gene using RT-PCR and RACE methods. Bioinformatics analysis revealed that duck Six1 CDS region comprised of 849 bp and encoded 282 amino acids and had a high degree of homology with other species, suggesting that the functions of duck Six1 gene are conserved among other animals. Real-time PCR used to determine the mRNA expression profiles of duck Six1 in different tissues and different developmental stages showed that Six1 was highly expressed in skeletal muscle and the embryonic stage. Furthermore, the eukaryotic expression vector pEGFP-duSix1 was constructed and transfected into the duck myoblasts; the MTT assay revealed an obvious increase of cell proliferation after transfection. The expression profiles of Six1, Myf5 and MyoD showed that their expression levels were significantly increased. These results together suggested that pEGFP-duSix1 vector was constructed successfully and overexpression of duck Six1 in the myoblasts could promote cell proliferation activity and significant up-regulate expression of Myf5 and MyoD.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.