Biophysical Modeling of Alpha Rhythms During Halothane-Induced Unconsciousness.

Sujith Vijayan, ShiNung Ching, Patrick L Purdon, Emery N Brown, Nancy J Kopell
{"title":"Biophysical Modeling of Alpha Rhythms During Halothane-Induced Unconsciousness.","authors":"Sujith Vijayan,&nbsp;ShiNung Ching,&nbsp;Patrick L Purdon,&nbsp;Emery N Brown,&nbsp;Nancy J Kopell","doi":"10.1109/NER.2013.6696130","DOIUrl":null,"url":null,"abstract":"<p><p>During the induction of general anesthesia there is a shift in power from the posterior regions of the brain to the frontal cortices; this shift in power is called anteriorization. For many anesthetics, a prominent feature of anteriorization is a shift specifically in the alpha band (8-13 Hz) from posterior to frontal cortices. Here we present a biophysical computational model that describes thalamocortical circuit-level dynamics underlying anteriorization of the alpha rhythm in the case of halothane. Halothane potentiates GABA<sub>A</sub> and increases potassium leak conductances. According to our model, an increase in potassium leak conductances hyperpolarizes and silences the high-threshold thalamocortical (HTC) cells, a specialized subset of thalamocortical cells that fire at the alpha frequency at relatively depolarized membrane potentials (>-60 mV) and are thought to be the generators of quiet awake occipital alpha. At the same time the potentiation of GABA<sub>A</sub> imposes an alpha time scale on both the cortical and the thalamic component of the frontal portion of our model. The alpha activity in the frontal component is further strengthened by reciprocal thalamocortical feedback. Thus, we argue that the dual molecular targets of halothane induce the anteriorization of the alpha rhythm by increasing potassium leak conductances, which abolishes occipital alpha, and by potentiating GABA<sub>A</sub>, which induces frontal alpha. These results provide a computational modeling formulation for studying highly detailed biophysical mechanisms of anesthetic action in silico.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"1104-1107"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NER.2013.6696130","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6696130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

During the induction of general anesthesia there is a shift in power from the posterior regions of the brain to the frontal cortices; this shift in power is called anteriorization. For many anesthetics, a prominent feature of anteriorization is a shift specifically in the alpha band (8-13 Hz) from posterior to frontal cortices. Here we present a biophysical computational model that describes thalamocortical circuit-level dynamics underlying anteriorization of the alpha rhythm in the case of halothane. Halothane potentiates GABAA and increases potassium leak conductances. According to our model, an increase in potassium leak conductances hyperpolarizes and silences the high-threshold thalamocortical (HTC) cells, a specialized subset of thalamocortical cells that fire at the alpha frequency at relatively depolarized membrane potentials (>-60 mV) and are thought to be the generators of quiet awake occipital alpha. At the same time the potentiation of GABAA imposes an alpha time scale on both the cortical and the thalamic component of the frontal portion of our model. The alpha activity in the frontal component is further strengthened by reciprocal thalamocortical feedback. Thus, we argue that the dual molecular targets of halothane induce the anteriorization of the alpha rhythm by increasing potassium leak conductances, which abolishes occipital alpha, and by potentiating GABAA, which induces frontal alpha. These results provide a computational modeling formulation for studying highly detailed biophysical mechanisms of anesthetic action in silico.

卤烷诱导无意识过程中α节律的生物物理模型。
在全身麻醉诱导过程中,力量从大脑后部区域转移到额叶皮层;这种权力的转移被称为反殖民化。对于许多麻醉药来说,前麻醉的一个突出特征是α波段(8-13赫兹)从后皮质向额皮质的移位。在这里,我们提出了一个生物物理计算模型,该模型描述了在氟烷的情况下,丘脑皮质回路水平的动力学在α节律恶化的基础上。氟烷增强GABAA并增加钾泄漏电导。根据我们的模型,钾泄漏电导的增加使高阈值丘脑皮质(HTC)细胞超极化和沉默,这是丘脑皮质细胞的一个特殊子集,在相对去极化的膜电位(>-60 mV)下以α频率放电,被认为是安静清醒枕α的产生器。同时,GABAA的增强对我们模型额叶部分的皮质和丘脑成分施加了α时间尺度。额叶部分的α活动通过相互的丘脑皮质反馈进一步加强。因此,我们认为氟烷的双重分子靶标通过增加钾泄漏电导(消除枕部α)和增强GABAA(诱导额部α)来诱导α节律的恶化。这些结果为研究硅中麻醉作用的高度详细的生物物理机制提供了一个计算建模公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信