{"title":"Flowback rate-transient analysis with spontaneous imbibition effects","authors":"A.-L.L. Benson, C.R. Clarkson","doi":"10.1016/j.jngse.2022.104830","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Analysis of flowback data, gathered immediately after fracture stimulation, can be performed to understand the fluid flow physics, investigate flow regimes, and obtain early estimates of </span>fracture properties<span>. During a hydraulic fracturing treatment, significant amounts of fracturing fluid will leak-off from the fractures into the reservoir due to </span></span>Darcy flow<span>, capillary, osmotic and electrostatic forces. Capillary invasion of fluids into the reservoir can cause a loss in gas relative permeability<span>, leading to an altered zone near the fracture-matrix interface, therefore impeding the flow of hydrocarbons into the fracture. Due to this phenomenon and other fluid transport mechanisms, a simple application of Darcy's law<span> might not be adequate for describing the fluid flow physics when solid-liquid interaction is significant. To overcome some of the above limitations, spontaneous imbibition effects are modeled at the fracture/matrix interface during the flowback period in this study.</span></span></span></p><p><span>This paper presents a semi-analytical model for analyzing two-phase water and gas flowback data, when spontaneous imbibition occurs. This model was developed by solving the fracture and reservoir matrix flow equations simultaneously. The effects of fracture and reservoir matrix pressure gradients on gas and water influx at the fracture-matrix interface are accounted for in order to evaluate the reservoir matrix hydrocarbon influx. The proposed model accounted for spontaneous imbibition driven by </span>capillary forces<span> by quantifying the fluid influx due to capillary processes and adding it to the mass flow equations. Further, capillary pressure effects were incorporated into the PVT properties of matrix pseudovariables. The average phase pressures in the fracture and matrix were calculated iteratively using a modified material balance approach.</span></p><p>The proposed semi-analytical model was successfully verified using fully-numerical simulation data. Practical application of the proposed model was then demonstrated using production data from a multi-fractured horizontal well.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104830"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022004164","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 7
Abstract
Analysis of flowback data, gathered immediately after fracture stimulation, can be performed to understand the fluid flow physics, investigate flow regimes, and obtain early estimates of fracture properties. During a hydraulic fracturing treatment, significant amounts of fracturing fluid will leak-off from the fractures into the reservoir due to Darcy flow, capillary, osmotic and electrostatic forces. Capillary invasion of fluids into the reservoir can cause a loss in gas relative permeability, leading to an altered zone near the fracture-matrix interface, therefore impeding the flow of hydrocarbons into the fracture. Due to this phenomenon and other fluid transport mechanisms, a simple application of Darcy's law might not be adequate for describing the fluid flow physics when solid-liquid interaction is significant. To overcome some of the above limitations, spontaneous imbibition effects are modeled at the fracture/matrix interface during the flowback period in this study.
This paper presents a semi-analytical model for analyzing two-phase water and gas flowback data, when spontaneous imbibition occurs. This model was developed by solving the fracture and reservoir matrix flow equations simultaneously. The effects of fracture and reservoir matrix pressure gradients on gas and water influx at the fracture-matrix interface are accounted for in order to evaluate the reservoir matrix hydrocarbon influx. The proposed model accounted for spontaneous imbibition driven by capillary forces by quantifying the fluid influx due to capillary processes and adding it to the mass flow equations. Further, capillary pressure effects were incorporated into the PVT properties of matrix pseudovariables. The average phase pressures in the fracture and matrix were calculated iteratively using a modified material balance approach.
The proposed semi-analytical model was successfully verified using fully-numerical simulation data. Practical application of the proposed model was then demonstrated using production data from a multi-fractured horizontal well.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.