3D shape isometric correspondence by spectral assignment.

Xiang Pan, Linda Shapiro
{"title":"3D shape isometric correspondence by spectral assignment.","authors":"Xiang Pan,&nbsp;Linda Shapiro","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Finding correspondences between two 3D shapes is common both in computer vision and computer graphics. In this paper, we propose a general framework that shows how to build correspondences by utilizing the isometric property. We show that the problem of finding such correspondences can be reduced to the problem of spectral assignment, which can be solved by finding the principal eigenvector of the pairwise correspondence matrix. The proposed framework consists of four main steps. First, it obtains initial candidate pairs by performing a preliminary matching using local shape features. Second, it constructs a pairwise correspondence matrix using geodesic distance and these initial pairs. Next, the principal eigenvector of the matrix is computed. Finally, the final correspondence is obtained from the maximal elements of the principal eigenvector. In our experiments, we show that the proposed method is robust under a variety of poses. Furthermore, our results show a great improvement over the best related method in the literature.</p>","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"2012 ","pages":"2210-2213"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166483/pdf/nihms432519.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding correspondences between two 3D shapes is common both in computer vision and computer graphics. In this paper, we propose a general framework that shows how to build correspondences by utilizing the isometric property. We show that the problem of finding such correspondences can be reduced to the problem of spectral assignment, which can be solved by finding the principal eigenvector of the pairwise correspondence matrix. The proposed framework consists of four main steps. First, it obtains initial candidate pairs by performing a preliminary matching using local shape features. Second, it constructs a pairwise correspondence matrix using geodesic distance and these initial pairs. Next, the principal eigenvector of the matrix is computed. Finally, the final correspondence is obtained from the maximal elements of the principal eigenvector. In our experiments, we show that the proposed method is robust under a variety of poses. Furthermore, our results show a great improvement over the best related method in the literature.

光谱分配的三维形状等距对应。
在计算机视觉和计算机图形学中,寻找两个三维形状之间的对应关系是很常见的。在本文中,我们提出了一个通用框架,展示了如何利用等距性质建立对应。我们证明了寻找这种对应的问题可以简化为谱分配问题,而谱分配问题可以通过寻找成对对应矩阵的主特征向量来解决。拟议的框架包括四个主要步骤。首先,利用局部形状特征进行初步匹配,得到初始候选对;其次,利用测地线距离和这些初始对构造成对对应矩阵。然后,计算矩阵的主特征向量。最后,由主特征向量的极大元素得到最终对应关系。实验结果表明,该方法在多种姿态下都具有良好的鲁棒性。此外,我们的结果比文献中最好的相关方法有很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信